Ruled varieties are unions of a family of linear spaces. They are objects of algebraic geometry as well as differential geometry, especially if the ruling is developable. This book is an introduction to both aspects, the algebraic and differential one. Starting from very elementary facts, the necessary techniques are developed, especially concerning Grassmannians and fundamental forms in a version suitable for complex projective algebraic geometry. Finally, this leads to recent results on the classification of developable ruled varieties and facts about tangent and secant varieties. Compared to many other topics of algebraic geometry, this is an area easily accessible to a graduate course.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Prof. Dr. em. Gerd Fischer war viele Jahre Professor für Mathematik an der Universität Düsseldorf. Er ist jetzt Gastprofessor an der Fakultät für Mathematik der TU München. Gerd Fischer ist Autor zahlreicher erfolgreicher Lehrbücher, u.a. der Linearen Algebra (vieweg studium - Grundkurs Mathematik).
Dr. Jens Piontkowski ist Hochschuldozent am Mathematischen Institut der Heinrich-Heine-Universität Düsseldorf.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 14,50 expédition depuis Allemagne vers France
Destinations, frais et délaisEUR 4,94 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : Antiquariat Silvanus - Inhaber Johannes Schaefer, Ahrbrück, Allemagne
X, 141 pp., 3528031387 Sprache: Englisch Gewicht in Gramm: 260 Groß 8°, Original-Karton (Softcover), Bibliotheks-Exemplar (ordnungsgemäß entwidmet), Stempel auf Titel, insgesamt gutes und innen sauberes Exemplar, N° de réf. du vendeur 123628
Quantité disponible : 1 disponible(s)
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur S0-9783528031381
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Spezielle Flaechen fuer Studium und ForschungProf. Dr. em. Gerd Fischer war viele Jahre Professor fuer Mathematik an der Universitaet Duesseldorf. Er ist jetzt Gastprofessor an der Fakultaet fuer Mathematik der TU Muenchen. Gerd Fischer ist Autor zahlreicher er. N° de réf. du vendeur 4866090
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783528031381_new
Quantité disponible : Plus de 20 disponibles
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 142 pages. German language. 9.25x6.50x0.25 inches. In Stock. This item is printed on demand. N° de réf. du vendeur __3528031387
Quantité disponible : 1 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Ruled varieties are unions of a family of linear spaces. They are objects of algebraic geometry as well as differential geometry, especially if the ruling is developable.This book is an introduction to both aspects, the algebraic and differential one. Starting from very elementary facts, the necessary techniques are developed, especially concerning Grassmannians and fundamental forms in a version suitable for complex projective algebraic geometry. Finally, this leads to recent results on the classification of developable ruled varieties and facts about tangent and secant varieties.Compared to many other topics of algebraic geometry, this is an area easily accessible to a graduate course. N° de réf. du vendeur 9783528031381
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Ruled varieties are unions of a family of linear spaces. They are objects of algebraic geometry as well as differential geometry, especially if the ruling is developable.This book is an introduction to both aspects, the algebraic and differential one. Starting from very elementary facts, the necessary techniques are developed, especially concerning Grassmannians and fundamental forms in a version suitable for complex projective algebraic geometry. Finally, this leads to recent results on the classification of developable ruled varieties and facts about tangent and secant varieties.Compared to many other topics of algebraic geometry, this is an area easily accessible to a graduate course. 142 pp. Englisch. N° de réf. du vendeur 9783528031381
Quantité disponible : 2 disponible(s)
Vendeur : Chiron Media, Wallingford, Royaume-Uni
PF. Etat : New. N° de réf. du vendeur 6666-IUK-9783528031381
Quantité disponible : 10 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -Ruled varieties are unions of a family of linear spaces. They are objects of algebraic geometry as well as differential geometry, especially if the ruling is developable.This book is an introduction to both aspects, the algebraic and differential one. Starting from very elementary facts, the necessary techniques are developed, especially concerning Grassmannians and fundamental forms in a version suitable for complex projective algebraic geometry. Finally, this leads to recent results on the classification of developable ruled varieties and facts about tangent and secant varieties.Compared to many other topics of algebraic geometry, this is an area easily accessible to a graduate course.Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Straße 46, 65189 Wiesbaden 156 pp. Englisch. N° de réf. du vendeur 9783528031381
Quantité disponible : 2 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 142 pages. German language. 9.25x6.50x0.25 inches. In Stock. N° de réf. du vendeur x-3528031387
Quantité disponible : 2 disponible(s)