The importance of convexity arguments in functional analysis has long been realized, but a comprehensive theory of infinite-dimensional convex sets has hardly existed for more than a decade. In fact, the integral representation theorems of Choquet and Bishop -de Leeuw together with the uniqueness theorem of Choquet inaugurated a new epoch in infinite-dimensional convexity. Initially considered curious and tech- nically difficult, these theorems attracted many mathematicians, and the proofs were gradually simplified and fitted into a general theory. The results can no longer be considered very "deep" or difficult, but they certainly remain all the more important. Today Choquet Theory provides a unified approach to integral representations in fields as diverse as potential theory, probability, function algebras, operator theory, group representations and ergodic theory. At the same time the new concepts and results have made it possible, and relevant, to ask new questions within the abstract theory itself. Such questions pertain to the interplay between compact convex sets K and their associated spaces A(K) of continuous affine functions; to the duality between faces of K and appropriate ideals of A(K); to dominated- extension problems for continuous affine functions on faces; and to direct convex sum decomposition into faces, as well as to integral for- mulas generalizing such decompositions. These problems are of geometric interest in their own right, but they are primarily suggested by applica- tions, in particular to operator theory and function algebras.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 7 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : Antiquariat Bookfarm, Löbnitz, Allemagne
Hardcover. 210 S. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. Ex-library in GOOD condition with library-signature and stamp(s). Some traces of use. R-16732 3540050906 Sprache: Englisch Gewicht in Gramm: 550. N° de réf. du vendeur 2480117
Quantité disponible : 1 disponible(s)
Vendeur : Anybook.com, Lincoln, Royaume-Uni
Etat : Good. Volume 57. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,550grams, ISBN:3540050906. N° de réf. du vendeur 5763782
Quantité disponible : 1 disponible(s)
Vendeur : Anybook.com, Lincoln, Royaume-Uni
Etat : Good. Volume 57. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,550grams, ISBN:3540050906. N° de réf. du vendeur 5758011
Quantité disponible : 1 disponible(s)
Vendeur : Antiquariat Silvanus - Inhaber Johannes Schaefer, Ahrbrück, Allemagne
IX, 210 S. mit 3 Figuren, (210 pp. with 3 Figures), 3540050906 Sprache: Englisch Gewicht in Gramm: 450 Groß 8°, Original-Leinen, Bibliotheks-Exemplar (ordungsgemäß entwidmet), Stempel auf Titel, insgesamt gutes und innen sauberes Exemplar, N° de réf. du vendeur 60397
Quantité disponible : 1 disponible(s)
Vendeur : Antiquariat Deinbacher, Murstetten, Autriche
1.Auflage,. IX, 210 Seiten Einband etwas berieben und lichtrandig, Bibl.Ex., innen guter und sauberer Zustand 9783540050902 Sprache: Englisch Gewicht in Gramm: 450 8° , Leinen- Hardcover/Pappeinband, N° de réf. du vendeur 144311
Quantité disponible : 1 disponible(s)
Vendeur : dsmbooks, Liverpool, Royaume-Uni
Hardcover. Etat : Very Good. Very Good. book. N° de réf. du vendeur D8S0-3-M-3540050906-4
Quantité disponible : 1 disponible(s)