In these lectures we summarize certain results on models in statistical physics and quantum field theory and especially emphasize the deep relation- ship between these subjects. From a physical point of view, we study phase transitions of realistic systems; from a more mathematical point of view, we describe field theoretical models defined on a euclidean space-time lattice, for which the lattice constant serves as a cutoff. The connection between these two approaches is obtained by identifying partition functions for spin models with discretized functional integrals. After an introduction to critical phenomena, we present methods which prove the existence or nonexistence of phase transitions for the Ising and Heisenberg models in various dimensions. As an example of a solvable system we discuss the two-dimensional Ising model. Topological excitations determine sectors of field theoretical models. In order to illustrate this, we first discuss soliton solutions of completely integrable classical models. Afterwards we dis- cuss sectors for the external field problem and for the Schwinger model. Then we put gauge models on a lattice, give a survey of some rigorous results and discuss the phase structure of some lattice gauge models. Since great interest has recently been shown in string models, we give a short introduction to both the classical mechanics of strings and the bosonic and fermionic models. The formulation of the continuum limit for lattice systems leads to a discussion of the renormalization group, which we apply to various models.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar3113020162076
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9783540193838
Quantité disponible : Plus de 20 disponibles
Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni
Paperback. Etat : New. Softcover reprint of the original 1st ed. 1988. N° de réf. du vendeur LU-9783540193838
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783540193838_new
Quantité disponible : Plus de 20 disponibles
Vendeur : Chiron Media, Wallingford, Royaume-Uni
PF. Etat : New. N° de réf. du vendeur 6666-IUK-9783540193838
Quantité disponible : 10 disponible(s)
Vendeur : Antiquariat Silvanus - Inhaber Johannes Schaefer, Ahrbrück, Allemagne
X, 151 Seiten mit 35 Figuren, 3540193839 Sprache: Englisch Gewicht in Gramm: 320 Groß 8°, Original-Karton (Softcover), Kanten minimal berieben, insgesamt gutes und innen sauberes Exemplar, (good copy), N° de réf. du vendeur 309133
Quantité disponible : 1 disponible(s)
Vendeur : Antiquariat Bernhardt, Kassel, Allemagne
kartoniert. Etat : Sehr gut. Zust: Gutes Exemplar. 151 Seiten, mit Abbildungen, Englisch 326g. N° de réf. du vendeur 494543
Quantité disponible : 1 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 161 pages. 9.75x6.75x0.25 inches. In Stock. N° de réf. du vendeur x-3540193839
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. N° de réf. du vendeur 4884140
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In these lectures we summarize certain results on models in statistical physics and quantum field theory and especially emphasize the deep relation ship between these subjects. From a physical point of view, we study phase transitions of realistic systems; from a more mathematical point of view, we describe field theoretical models defined on a euclidean space-time lattice, for which the lattice constant serves as a cutoff. The connection between these two approaches is obtained by identifying partition functions for spin models with discretized functional integrals. After an introduction to critical phenomena, we present methods which prove the existence or nonexistence of phase transitions for the Ising and Heisenberg models in various dimensions. As an example of a solvable system we discuss the two-dimensional Ising model. Topological excitations determine sectors of field theoretical models. In order to illustrate this, we first discuss soliton solutions of completely integrable classical models. Afterwards we dis cuss sectors for the external field problem and for the Schwinger model. Then we put gauge models on a lattice, give a survey of some rigorous results and discuss the phase structure of some lattice gauge models. Since great interest has recently been shown in string models, we give a short introduction to both the classical mechanics of strings and the bosonic and fermionic models. The formulation of the continuum limit for lattice systems leads to a discussion of the renormalization group, which we apply to various models. 164 pp. Englisch. N° de réf. du vendeur 9783540193838
Quantité disponible : 2 disponible(s)