In the mid 1960s, when a single chip contained an average of 50 transistors, Gordon Moore observed that integrated circuits were doubling in complexity every year. In an in?uential article published by Electronics Magazine in 1965, Moore predicted that this trend would continue for the next 10 years. Despite being criticized for its "unrealistic optimism," Moore's prediction has remained valid for far longer than even he imagined: today, chips built using state-- the-art techniques typically contain several million transistors. The advances in fabrication technology that have supported Moore's law for four decades have fuelled the computer revolution. However, this exponential increase in transistor density poses new design challenges to engineers and computer scientists alike. New techniques for managing complexity must be developed if circuits are to take full advantage of the vast numbers of transistors available. In this monograph we investigate both (i) the design of high-level languages for hardware description, and (ii) techniques involved in translating these hi- level languages to silicon. We propose SAFL, a ?rst-order functional language designedspeci?callyforbehavioralhardwaredescription, anddescribetheimp- mentation of its associated silicon compiler. We show that the high-level pr- erties of SAFL allow one to exploit program analyses and optimizations that are not employed in existing synthesis systems. Furthermore, since SAFL fully abstracts the low-leveldetails of the implementation technology, we show how it can be compiled to a range of di?erent design styles including fully synchronous design and globally asynchronous locally synchronous (GALS) circuits.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 5,79 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : WeBuyBooks, Rossendale, LANCS, Royaume-Uni
Etat : Like New. Most items will be dispatched the same or the next working day. An apparently unread copy in perfect condition. Dust cover is intact with no nicks or tears. Spine has no signs of creasing. Pages are clean and not marred by notes or folds of any kind. N° de réf. du vendeur wbs8800593816
Quantité disponible : 1 disponible(s)
Vendeur : Emile Kerssemakers ILAB, Heerlen, Pays-Bas
23 cm. original paperback. 196 pp. references. index. "Lecture Notes in Computer Science". -(libr labels, otherwise (very) good). 335g. N° de réf. du vendeur 71738
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. In the mid 1960s, when a single chip contained an average of 50 transistors, Gordon Moore observed that integrated circuits were doubling in complexity every year. In an in?uential article published by Electronics Magazine in 1965, Moore predicted that this. N° de réf. du vendeur 4885118
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - In the mid 1960s, when a single chip contained an average of 50 transistors, Gordon Moore observed that integrated circuits were doubling in complexity every year. In an in uential article published by Electronics Magazine in 1965, Moore predicted that this trend would continue for the next 10 years. Despite being criticized for its 'unrealistic optimism,' Moore's prediction has remained valid for far longer than even he imagined: today, chips built using state-- the-art techniques typically contain several million transistors. The advances in fabrication technology that have supported Moore's law for four decades have fuelled the computer revolution. However,this exponential increase in transistor density poses new design challenges to engineers and computer scientists alike. New techniques for managing complexity must be developed if circuits are to take full advantage of the vast numbers of transistors available. In this monograph we investigate both (i) the design of high-level languages for hardware description, and (ii) techniques involved in translating these hi- level languages to silicon. We propose SAFL, a rst-order functional language designedspeci callyforbehavioralhardwaredescription,anddescribetheimp- mentation of its associated silicon compiler. We show that the high-level pr- erties of SAFL allow one to exploit program analyses and optimizations that are not employed in existing synthesis systems. Furthermore, since SAFL fully abstracts the low-leveldetails of the implementation technology, we show how it can be compiled to a range of di erent design styles including fully synchronous design and globally asynchronous locally synchronous (GALS) circuits. N° de réf. du vendeur 9783540213062
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In the mid 1960s, when a single chip contained an average of 50 transistors, Gordon Moore observed that integrated circuits were doubling in complexity every year. In an in uential article published by Electronics Magazine in 1965, Moore predicted that this trend would continue for the next 10 years. Despite being criticized for its 'unrealistic optimism,' Moore's prediction has remained valid for far longer than even he imagined: today, chips built using state-- the-art techniques typically contain several million transistors. The advances in fabrication technology that have supported Moore's law for four decades have fuelled the computer revolution. However,this exponential increase in transistor density poses new design challenges to engineers and computer scientists alike. New techniques for managing complexity must be developed if circuits are to take full advantage of the vast numbers of transistors available. In this monograph we investigate both (i) the design of high-level languages for hardware description, and (ii) techniques involved in translating these hi- level languages to silicon. We propose SAFL, a rst-order functional language designedspeci callyforbehavioralhardwaredescription,anddescribetheimp- mentation of its associated silicon compiler. We show that the high-level pr- erties of SAFL allow one to exploit program analyses and optimizations that are not employed in existing synthesis systems. Furthermore, since SAFL fully abstracts the low-leveldetails of the implementation technology, we show how it can be compiled to a range of di erent design styles including fully synchronous design and globally asynchronous locally synchronous (GALS) circuits. 216 pp. Englisch. N° de réf. du vendeur 9783540213062
Quantité disponible : 2 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783540213062_new
Quantité disponible : Plus de 20 disponibles
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -In the mid 1960s, when a single chip contained an average of 50 transistors, Gordon Moore observed that integrated circuits were doubling in complexity every year. In an in uential article published by Electronics Magazine in 1965, Moore predicted that this trend would continue for the next 10 years. Despite being criticized for its ¿unrealistic optimism,¿ Moore¿s prediction has remained valid for far longer than even he imagined: today, chips built using state-- the-art techniques typically contain several million transistors. The advances in fabrication technology that have supported Moore¿s law for four decades have fuelled the computer revolution. However,this exponential increase in transistor density poses new design challenges to engineers and computer scientists alike. New techniques for managing complexity must be developed if circuits are to take full advantage of the vast numbers of transistors available. In this monograph we investigate both (i) the design of high-level languages for hardware description, and (ii) techniques involved in translating these hi- level languages to silicon. We propose SAFL, a rst-order functional language designedspeci callyforbehavioralhardwaredescription,anddescribetheimp- mentation of its associated silicon compiler. We show that the high-level pr- erties of SAFL allow one to exploit program analyses and optimizations that are not employed in existing synthesis systems. Furthermore, since SAFL fully abstracts the low-leveldetails of the implementation technology, we show how it can be compiled to a range of di erent design styles including fully synchronous design and globally asynchronous locally synchronous (GALS) circuits.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 216 pp. Englisch. N° de réf. du vendeur 9783540213062
Quantité disponible : 2 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 2546237-n
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 2546237-n
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 2546237
Quantité disponible : Plus de 20 disponibles