Articles liés à Algorithmic Learning Theory: 15th International Conference,...

Algorithmic Learning Theory: 15th International Conference, ALT 2004, Padova, Italy, October 2-5, 2004. Proceedings - Couverture souple

 
9783540233565: Algorithmic Learning Theory: 15th International Conference, ALT 2004, Padova, Italy, October 2-5, 2004. Proceedings

Synopsis

Algorithmic learning theory is mathematics about computer programs which learn from experience. This involves considerable interaction between various mathematical disciplines including theory of computation, statistics, and c- binatorics. There is also considerable interaction with the practical, empirical ?elds of machine and statistical learning in which a principal aim is to predict, from past data about phenomena, useful features of future data from the same phenomena. The papers in this volume cover a broad range of topics of current research in the ?eld of algorithmic learning theory. We have divided the 29 technical, contributed papers in this volume into eight categories (corresponding to eight sessions) re?ecting this broad range. The categories featured are Inductive Inf- ence, Approximate Optimization Algorithms, Online Sequence Prediction, S- tistical Analysis of Unlabeled Data, PAC Learning & Boosting, Statistical - pervisedLearning, LogicBasedLearning, andQuery&ReinforcementLearning. Below we give a brief overview of the ?eld, placing each of these topics in the general context of the ?eld. Formal models of automated learning re?ect various facets of the wide range of activities that can be viewed as learning. A ?rst dichotomy is between viewing learning as an inde?nite process and viewing it as a ?nite activity with a de?ned termination. Inductive Inference models focus on inde?nite learning processes, requiring only eventual success of the learner to converge to a satisfactory conclusion.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

état :  Assez bon
We are unable to ship to Canada...
Afficher cet article
EUR 44,97

Autre devise

EUR 6 expédition vers Etats-Unis

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 54,14

Autre devise

EUR 2,27 expédition vers Etats-Unis

Destinations, frais et délais

Autres éditions populaires du même titre

9783662205204: Algorithmic Learning Theory: 15th International Conference, ALT 2004, Padova, Italy, October 2-5, 2004. Proceedings

Edition présentée

ISBN 10 :  3662205203 ISBN 13 :  9783662205204
Editeur : Springer, 2014
Couverture souple

Résultats de recherche pour Algorithmic Learning Theory: 15th International Conference,...

Image d'archives

Ben David, Shai [Editor]; Case, John [Editor]; Maruoka, Akira [Editor];
Edité par Springer, 2004
ISBN 10 : 3540233563 ISBN 13 : 9783540233565
Ancien ou d'occasion Paperback

Vendeur : GuthrieBooks, Spring Branch, TX, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : Very Good. We are unable to ship to Canada at this time.Ex-library paperback in very nice condition with the usual markings and attachments. Except for library markings, interior clean and unmarked. Tight binding. N° de réf. du vendeur UTD1422823

Contacter le vendeur

Acheter D'occasion

EUR 44,97
Autre devise
Frais de port : EUR 6
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Ben-David, Shai (EDT); Case, John (EDT); Maruoka, Akira (EDT)
Edité par Springer, 2004
ISBN 10 : 3540233563 ISBN 13 : 9783540233565
Neuf Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 3195666-n

Contacter le vendeur

Acheter neuf

EUR 54,14
Autre devise
Frais de port : EUR 2,27
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Shai Ben David
ISBN 10 : 3540233563 ISBN 13 : 9783540233565
Neuf Paperback

Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : new. Paperback. This book constitutes the refereed proceedings of the 15th International Conference on Algorithmic Learning Theory, ALT 2004, held in Padova, Italy in October 2004. The 29 revised full papers presented together with 5 invited papers and 3 tutorial summaries were carefully reviewed and selected from 91 submissions. The papers are organized in topical sections on inductive inference, PAC learning and boosting, statistical supervised learning, online sequence learning, approximate optimization algorithms, logic based learning, and query and reinforcement learning. Algorithmic learning theory is mathematics about computer programs which learn from experience. Formal models of automated learning re?ect various facets of the wide range of activities that can be viewed as learning. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9783540233565

Contacter le vendeur

Acheter neuf

EUR 56,48
Autre devise
Frais de port : Gratuit
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Maruoka, Akira; David, Shai Ben; Case, John
Edité par Springer, 2004
ISBN 10 : 3540233563 ISBN 13 : 9783540233565
Neuf Couverture souple

Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur ABLIING23Mar3113020163608

Contacter le vendeur

Acheter neuf

EUR 53,54
Autre devise
Frais de port : EUR 3,43
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Maruoka, Akira; David, Shai Ben; Case, John
Edité par Springer, 2004
ISBN 10 : 3540233563 ISBN 13 : 9783540233565
Neuf Couverture souple

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9783540233565_new

Contacter le vendeur

Acheter neuf

EUR 58,25
Autre devise
Frais de port : EUR 13,79
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Ben-David, Shai (EDT); Case, John (EDT); Maruoka, Akira (EDT)
Edité par Springer, 2004
ISBN 10 : 3540233563 ISBN 13 : 9783540233565
Neuf Couverture souple

Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 3195666-n

Contacter le vendeur

Acheter neuf

EUR 58,24
Autre devise
Frais de port : EUR 17,27
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Shai Ben David
ISBN 10 : 3540233563 ISBN 13 : 9783540233565
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Algorithmic learning theory is mathematics about computer programs which learn from experience. This involves considerable interaction between various mathematical disciplines including theory of computation, statistics, and c- binatorics. There is also considerable interaction with the practical, empirical elds of machine and statistical learning in which a principal aim is to predict, from past data about phenomena, useful features of future data from the same phenomena. The papers in this volume cover a broad range of topics of current research in the eld of algorithmic learning theory. We have divided the 29 technical, contributed papers in this volume into eight categories (corresponding to eight sessions) re ecting this broad range. The categories featured are Inductive Inf- ence, Approximate Optimization Algorithms, Online Sequence Prediction, S- tistical Analysis of Unlabeled Data, PAC Learning & Boosting, Statistical - pervisedLearning,LogicBasedLearning,andQuery&ReinforcementLearning. Below we give a brief overview of the eld, placing each of these topics in the general context of the eld. Formal models of automated learning re ect various facets of the wide range of activities that can be viewed as learning. A rst dichotomy is between viewing learning as an inde nite process and viewing it as a nite activity with a de ned termination. Inductive Inference models focus on inde nite learning processes, requiring only eventual success of the learner to converge to a satisfactory conclusion. 528 pp. Englisch. N° de réf. du vendeur 9783540233565

Contacter le vendeur

Acheter neuf

EUR 53,49
Autre devise
Frais de port : EUR 23
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Ben-David, Shai|Case, John|Maruoka, Akira
Edité par Springer Berlin Heidelberg, 2004
ISBN 10 : 3540233563 ISBN 13 : 9783540233565
Neuf Kartoniert / Broschiert
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Kartoniert / Broschiert. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Algorithmic learning theory is mathematics about computer programs which learn from experience. This involves considerable interaction between various mathematical disciplines including theory of computation, statistics, and c- binatorics. There is also con. N° de réf. du vendeur 4885875

Contacter le vendeur

Acheter neuf

EUR 48,37
Autre devise
Frais de port : EUR 48,99
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Shai Ben David
ISBN 10 : 3540233563 ISBN 13 : 9783540233565
Neuf Taschenbuch

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Neuware -Algorithmic learning theory is mathematics about computer programs which learn from experience. This involves considerable interaction between various mathematical disciplines including theory of computation, statistics, and c- binatorics. There is also considerable interaction with the practical, empirical elds of machine and statistical learning in which a principal aim is to predict, from past data about phenomena, useful features of future data from the same phenomena. The papers in this volume cover a broad range of topics of current research in the eld of algorithmic learning theory. We have divided the 29 technical, contributed papers in this volume into eight categories (corresponding to eight sessions) re ecting this broad range. The categories featured are Inductive Inf- ence, Approximate Optimization Algorithms, Online Sequence Prediction, S- tistical Analysis of Unlabeled Data, PAC Learning & Boosting, Statistical - pervisedLearning,LogicBasedLearning,andQuery&ReinforcementLearning. Below we give a brief overview of the eld, placing each of these topics in the general context of the eld. Formal models of automated learning re ect various facets of the wide range of activities that can be viewed as learning. A rst dichotomy is between viewing learning as an inde nite process and viewing it as a nite activity with a de ned termination. Inductive Inference models focus on inde nite learning processes, requiring only eventual success of the learner to converge to a satisfactory conclusion. 528 pp. Englisch. N° de réf. du vendeur 9783540233565

Contacter le vendeur

Acheter neuf

EUR 53,49
Autre devise
Frais de port : EUR 60
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Shai Ben David
Edité par Springer Berlin Heidelberg, 2004
ISBN 10 : 3540233563 ISBN 13 : 9783540233565
Neuf Taschenbuch

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Algorithmic learning theory is mathematics about computer programs which learn from experience. This involves considerable interaction between various mathematical disciplines including theory of computation, statistics, and c- binatorics. There is also considerable interaction with the practical, empirical elds of machine and statistical learning in which a principal aim is to predict, from past data about phenomena, useful features of future data from the same phenomena. The papers in this volume cover a broad range of topics of current research in the eld of algorithmic learning theory. We have divided the 29 technical, contributed papers in this volume into eight categories (corresponding to eight sessions) re ecting this broad range. The categories featured are Inductive Inf- ence, Approximate Optimization Algorithms, Online Sequence Prediction, S- tistical Analysis of Unlabeled Data, PAC Learning & Boosting, Statistical - pervisedLearning,LogicBasedLearning,andQuery&ReinforcementLearning. Below we give a brief overview of the eld, placing each of these topics in the general context of the eld. Formal models of automated learning re ect various facets of the wide range of activities that can be viewed as learning. A rst dichotomy is between viewing learning as an inde nite process and viewing it as a nite activity with a de ned termination. Inductive Inference models focus on inde nite learning processes, requiring only eventual success of the learner to converge to a satisfactory conclusion. N° de réf. du vendeur 9783540233565

Contacter le vendeur

Acheter neuf

EUR 53,49
Autre devise
Frais de port : EUR 63,96
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

There are 8 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre