Transcription Factor (TF) and Transcription Factor Binding Site (TFBS) bindings are fundamental protein-DNA interactions in transcriptional regulation. TFs and TFBSs are conserved to form patterns (motifs) due to their important roles for controlling gene expressions and finally affecting functions and appearances. Pattern discovery is thus important for deciphering gene regulation, which has tremendous impacts on the understanding of life, bio-engineering and therapeutic applications. This thesis contributes to pattern discovery involving TFBS motifs and TF-TFBS associated sequence patterns based on Evolutionary Computation (EC), especially Genetic Algorithms (GAs), which are promising for bioinformatics problems with huge and noisy search space. On TFBS motif discovery, three novel GA based algorithms are developed, namely GALF-P with focus on optimization, GALF-G for modeling, and GASMEN for spaced motifs. TF-TFBS associated sequence pattern (rule) discovery is further investigated for better deciphering protein-DNA interactions in regulation. We for the first time generalize previous exact TF-TFBS rules to approximate ones using a progressive approach.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Transcription Factor (TF) and Transcription Factor Binding Site (TFBS) bindings are fundamental protein-DNA interactions in transcriptional regulation. TFs and TFBSs are conserved to form patterns (motifs) due to their important roles for controlling gene expressions and finally affecting functions and appearances. Pattern discovery is thus important for deciphering gene regulation, which has tremendous impacts on the understanding of life, bio-engineering and therapeutic applications. This thesis contributes to pattern discovery involving TFBS motifs and TF-TFBS associated sequence patterns based on Evolutionary Computation (EC), especially Genetic Algorithms (GAs), which are promising for bioinformatics problems with huge and noisy search space. On TFBS motif discovery, three novel GA based algorithms are developed, namely GALF-P with focus on optimization, GALF-G for modeling, and GASMEN for spaced motifs. TF-TFBS associated sequence pattern (rule) discovery is further investigated for better deciphering protein-DNA interactions in regulation. We for the first time generalize previous exact TF-TFBS rules to approximate ones using a progressive approach.
Dr. Tak-Ming CHAN obtained his Ph.D from the Department of Computer Science & Engineering, the Chinese University of Hong Kong in 2010, and his B.Sc. in Computer science from Fudan University in 2006. His research is about bioinformatics, data mining and evolutionary computation. He has been awarded in several local IEEE & ACM competitions.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 4,55 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Kartoniert / Broschiert. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: CHAN Tak-MingDr. Tak-Ming CHAN obtained his Ph.D from the Department of Computer Science & Engineering, the Chinese University of Hong Kong in 2010, and his B.Sc. in Computer science from Fudan University in 2006. His research is abo. N° de réf. du vendeur 4981031
Quantité disponible : Plus de 20 disponibles
Vendeur : Phatpocket Limited, Waltham Abbey, HERTS, Royaume-Uni
Etat : Like New. Used - Like New. Book is new and unread but may have minor shelf wear. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions. N° de réf. du vendeur Z1-B-028-00946
Quantité disponible : 2 disponible(s)
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
paperback. Etat : Like New. Like New. book. N° de réf. du vendeur ERICA82936393627995
Quantité disponible : 1 disponible(s)