The computer vision problem of face recognition has over the years become a common high-requirement benchmark for machine learning methods. In the last decade, highly efficient face recognition systems have been developed that extensively use the nature of the image domain to achieve accurate real-time performance. The effectiveness of such systems are possible only with the progress of machine learning algorithms. Support vector machine learning is a relatively recent method that offers a good generalization performance in classification problems like face recognition. An algorithm based on Gabor texture information with SVM classifier is demonstrated in this book.The estimated model parameters serve as texture representation and experiments were performed on Yale,ORL and FERET databases to validate the feasibility of the method. The results showed that both Gabor magnitude and Gabor phase based texture representation technique with SVM classifier significantly outperformed the widely used Gabor energy based systems and other existing subspace methods. In addition, the feature level fusion of these two kinds of texture representations performs better than when used individually.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
The computer vision problem of face recognition has over the years become a common high-requirement benchmark for machine learning methods. In the last decade, highly efficient face recognition systems have been developed that extensively use the nature of the image domain to achieve accurate real-time performance. The effectiveness of such systems are possible only with the progress of machine learning algorithms. Support vector machine learning is a relatively recent method that offers a good generalization performance in classification problems like face recognition. An algorithm based on Gabor texture information with SVM classifier is demonstrated in this book.The estimated model parameters serve as texture representation and experiments were performed on Yale,ORL and FERET databases to validate the feasibility of the method. The results showed that both Gabor magnitude and Gabor phase based texture representation technique with SVM classifier significantly outperformed the widely used Gabor energy based systems and other existing subspace methods. In addition, the feature level fusion of these two kinds of texture representations performs better than when used individually.
Latha Parthiban is working as Professor in Department of Computer Science and Engineering at SSN College of Engineering,India. She earned her B.E from Madras University, M.E from Anna University and PhD from Pondicherry Central University. Her current research area involves applications of data mining, machine learning and medical image processing.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Kartoniert / Broschiert. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Parthiban LathaLatha Parthiban is working as Professor in Department of Computer Science and Engineering at SSN College of Engineering,India. She earned her B.E from Madras University, M.E from Anna University and PhD from Pondicherr. N° de réf. du vendeur 4981385
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783639366990_new
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
PAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9783639366990
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9783639366990
Quantité disponible : Plus de 20 disponibles
Vendeur : Chiron Media, Wallingford, Royaume-Uni
PF. Etat : New. N° de réf. du vendeur 6666-IUK-9783639366990
Quantité disponible : 10 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9783639366990
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The computer vision problem of face recognition has over the years become a common high-requirement benchmark for machine learning methods. In the last decade, highly efficient face recognition systems have been developed that extensively use the nature of the image domain to achieve accurate real-time performance. The effectiveness of such systems are possible only with the progress of machine learning algorithms. Support vector machine learning is a relatively recent method that offers a good generalization performance in classification problems like face recognition. An algorithm based on Gabor texture information with SVM classifier is demonstrated in this book.The estimated model parameters serve as texture representation and experiments were performed on Yale,ORL and FERET databases to validate the feasibility of the method. The results showed that both Gabor magnitude and Gabor phase based texture representation technique with SVM classifier significantly outperformed the widely used Gabor energy based systems and other existing subspace methods. In addition, the feature level fusion of these two kinds of texture representations performs better than when used individually. N° de réf. du vendeur 9783639366990
Quantité disponible : 2 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar3113020192755
Quantité disponible : Plus de 20 disponibles