This book with its three contributions by Arhangel'skii and Choban treats important topics in general topology and their role in functional analysis and axiomatic set theory. It is a useful reference for graduate students and researchers working in topology, functional analysis, set theory and probability theory.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 29,65 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt.  This reference work deals with important topics in general topology and their role in functional analysis and axiomatic set theory, for graduate students and researchers working in topology, functional analysis, set theory and probability theor. N° de réf. du vendeur 5047170
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - The problem of metrization of topological spaces has had an enormous influence on the development of general topology. Singling out the basic topo logical components of metrizability has determined the main reference points in the construction of the classification of topological spaces. These are (pri marily) paracompactness, collectionwise normality, monotonic normality and perfect normality, the concepts of a stratifiable space, Moore space and u space, point-countable base, and uniform base. The method of covers has taken up a leading role in this classification. Of paramount significance in the applications of this method have been the properties of covers relating to the character of their elements (open covers, closed covers), the mutual dispo sition of these elements (star finite, point finite, locally finite covers, etc. ), as well as the relations of refinement between covers (simple refinement, refine ment with closure, combinatorial refinement, star and strong star refinement). On this basis a hierarchy of properties of paracompactness type has been sin gled out, together with the classes of spaces corresponding to them, the most important of which is the class of paracompacta. The behaviour of families of covers with respect to the topology of a space has important significance. Here, first and foremost, is the notion of a refining family of covers, a development which appears in several modifications and, together with the notion of paracompactness, plays a key role in metrization problems. N° de réf. du vendeur 9783642081231
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This reference work deals with important topics in general topology and their role in functional analysis and axiomatic set theory, for graduate students and researchers working in topology, functional analysis, set theory and probability theory. It provides a guide to recent research findings, with three contributions by Arhangel'skii and Choban. 244 pp. Englisch. N° de réf. du vendeur 9783642081231
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -The problem of metrization of topological spaces has had an enormous influence on the development of general topology. Singling out the basic topo logical components of metrizability has determined the main reference points in the construction of the classification of topological spaces. These are (pri marily) paracompactness, collectionwise normality, monotonic normality and perfect normality, the concepts of a stratifiable space, Moore space and u space, point-countable base, and uniform base. The method of covers has taken up a leading role in this classification. Of paramount significance in the applications of this method have been the properties of covers relating to the character of their elements (open covers, closed covers), the mutual dispo sition of these elements (star finite, point finite, locally finite covers, etc. ), as well as the relations of refinement between covers (simple refinement, refine ment with closure, combinatorial refinement, star and strong star refinement). On this basis a hierarchy of properties of paracompactness type has been sin gled out, together with the classes of spaces corresponding to them, the most important of which is the class of paracompacta. The behaviour of families of covers with respect to the topology of a space has important significance. Here, first and foremost, is the notion of a refining family of covers, a development which appears in several modifications and, together with the notion of paracompactness, plays a key role in metrization problems.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 244 pp. Englisch. N° de réf. du vendeur 9783642081231
Quantité disponible : 2 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In English. N° de réf. du vendeur ria9783642081231_new
Quantité disponible : Plus de 20 disponibles
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar3113020216823
Quantité disponible : Plus de 20 disponibles
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
Paperback. Etat : Like New. Like New. book. N° de réf. du vendeur ERICA80036420812316
Quantité disponible : 1 disponible(s)