The book is a comprehensive survey of one of the most attractive fields of research in mathematics, namely the theory of hyperbolic dynamical systems. This subject forms the theoretical basis for what is sometimes called the "theory of chaos". The book addresses graduate students and researchers in mathematics and physics.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Vendeur : Sizzler Texts, SAN GABRIEL, CA, Etats-Unis
Hardcover. Etat : New. Etat de la jaquette : New. 1st Edition. **INTERNATIONAL EDITION** Read carefully before purchase: This book is the international edition in mint condition with the different ISBN and book cover design, the major content is printed in full English as same as the original North American edition. The book printed in black and white, generally send in twenty-four hours after the order confirmed. All shipments contain tracking numbers. Great professional textbook selling experience and expedite shipping service. N° de réf. du vendeur ABE-8059722686
Quantité disponible : Plus de 20 disponibles
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar3113020216864
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This volume is devoted to the 'hyperbolic theory' of dynamical systems (DS), that is, the theory of smooth DS's with hyperbolic behaviour of the tra jectories (generally speaking, not the individual trajectories, but trajectories filling out more or less 'significant' subsets in the phase space. Hyperbolicity the property that under a small displacement of any of a trajectory consists in point of it to one side of the trajectory, the change with time of the relative positions of the original and displaced points resulting from the action of the DS is reminiscent of the mot ion next to a saddle. If there are 'sufficiently many' such trajectories and the phase space is compact, then although they 'tend to diverge from one another' as it were, they 'have nowhere to go' and their behaviour acquires a complicated intricate character. (In the physical literature one often talks about 'chaos' in such situations. ) This type of be haviour would appear to be the opposite of the more customary and simple type of behaviour characterized by its own kind of stability and regularity of the motions (these words are for the moment not being used as a strict ter 1 minology but rather as descriptive informal terms). The ergodic properties of DS's with hyperbolic behaviour of trajectories (Bunimovich et al. 1985) have already been considered in Volume 2 of this series. In this volume we therefore consider mainly the properties of a topological character (see below 2 for further details). 248 pp. Englisch. N° de réf. du vendeur 9783642081682
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. N° de réf. du vendeur 5047215
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 248. N° de réf. du vendeur 263058050
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 248 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. N° de réf. du vendeur 5838429
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND pp. 248. N° de réf. du vendeur 183058056
Quantité disponible : 4 disponible(s)
Vendeur : preigu, Osnabrück, Allemagne
Taschenbuch. Etat : Neu. Dynamical Systems IX | Dynamical Systems with Hyperbolic Behaviour | D. V. Anosov | Taschenbuch | viii | Englisch | 2010 | Springer | EAN 9783642081682 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. N° de réf. du vendeur 107174807
Quantité disponible : 5 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -This volume is devoted to the 'hyperbolic theory' of dynamical systems (DS), that is, the theory of smooth DS's with hyperbolic behaviour of the tra jectories (generally speaking, not the individual trajectories, but trajectories filling out more or less 'significant' subsets in the phase space. Hyperbolicity the property that under a small displacement of any of a trajectory consists in point of it to one side of the trajectory, the change with time of the relative positions of the original and displaced points resulting from the action of the DS is reminiscent of the mot ion next to a saddle. If there are 'sufficiently many' such trajectories and the phase space is compact, then although they 'tend to diverge from one another' as it were, they 'have nowhere to go' and their behaviour acquires a complicated intricate character. (In the physical literature one often talks about 'chaos' in such situations. ) This type of be haviour would appear to be the opposite of the more customary and simple type of behaviour characterized by its own kind of stability and regularity of the motions (these words are for the moment not being used as a strict ter 1 minology but rather as descriptive informal terms). The ergodic properties of DS's with hyperbolic behaviour of trajectories (Bunimovich et al. 1985) have already been considered in Volume 2 of this series. In this volume we therefore consider mainly the properties of a topological character (see below 2 for further details).Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 248 pp. Englisch. N° de réf. du vendeur 9783642081682
Quantité disponible : 1 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This volume is devoted to the 'hyperbolic theory' of dynamical systems (DS), that is, the theory of smooth DS's with hyperbolic behaviour of the tra jectories (generally speaking, not the individual trajectories, but trajectories filling out more or less 'significant' subsets in the phase space. Hyperbolicity the property that under a small displacement of any of a trajectory consists in point of it to one side of the trajectory, the change with time of the relative positions of the original and displaced points resulting from the action of the DS is reminiscent of the mot ion next to a saddle. If there are 'sufficiently many' such trajectories and the phase space is compact, then although they 'tend to diverge from one another' as it were, they 'have nowhere to go' and their behaviour acquires a complicated intricate character. (In the physical literature one often talks about 'chaos' in such situations. ) This type of be haviour would appear to be the opposite of the more customary and simple type of behaviour characterized by its own kind of stability and regularity of the motions (these words are for the moment not being used as a strict ter 1 minology but rather as descriptive informal terms). The ergodic properties of DS's with hyperbolic behaviour of trajectories (Bunimovich et al. 1985) have already been considered in Volume 2 of this series. In this volume we therefore consider mainly the properties of a topological character (see below 2 for further details). N° de réf. du vendeur 9783642081682
Quantité disponible : 1 disponible(s)