Space and time are often vital components of research data sets. Accounting for and utilizing the space and time information in statistical models become beneficial when the response variable in question is proved to have a space and time dependence. The objectives of this work were to investigate crop yield trends in space and time, quantify the variability in yield explained by genetics and space-time (environment) factors, and study how spatio-temporal information could be incorporated and also utilized in modeling and forecasting yield. Trend of irrigated and dryland crops was analyzed by employing time series statistical techniques. Some traditional linear regressions and smoothing techniques were first used to obtain the yield function. A multivariate time series modeling approach was conducted to demonstrate how the space and time correlation information can be utilized to model and forecast yield and related variables. The conclusion from this research clearly emphasizes the importance of space and time components of data sets because they can adjust for those underlying variables and factor effects that are not measured or not well understood.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Space and time are often vital components of research data sets. Accounting for and utilizing the space and time information in statistical models become beneficial when the response variable in question is proved to have a space and time dependence. The objectives of this work were to investigate crop yield trends in space and time, quantify the variability in yield explained by genetics and space-time (environment) factors, and study how spatio-temporal information could be incorporated and also utilized in modeling and forecasting yield. Trend of irrigated and dryland crops was analyzed by employing time series statistical techniques. Some traditional linear regressions and smoothing techniques were first used to obtain the yield function. A multivariate time series modeling approach was conducted to demonstrate how the space and time correlation information can be utilized to model and forecast yield and related variables. The conclusion from this research clearly emphasizes the importance of space and time components of data sets because they can adjust for those underlying variables and factor effects that are not measured or not well understood.
Research Associate, Kansas State University, Manhattan, USA.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 29,22 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Assefa YaredResearch Associate, Kansas State University, Manhattan, USA.Space and time are often vital components of research data sets. Accounting for and utilizing the space and time information in statistical models become ben. N° de réf. du vendeur 5152674
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783659384226_new
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
PAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9783659384226
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9783659384226
Quantité disponible : Plus de 20 disponibles
Vendeur : Chiron Media, Wallingford, Royaume-Uni
Paperback. Etat : New. N° de réf. du vendeur 6666-IUK-9783659384226
Quantité disponible : 10 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9783659384226
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Space and time are often vital components of research data sets. Accounting for and utilizing the space and time information in statistical models become beneficial when the response variable in question is proved to have a space and time dependence. The objectives of this work were to investigate crop yield trends in space and time, quantify the variability in yield explained by genetics and space-time (environment) factors, and study how spatio-temporal information could be incorporated and also utilized in modeling and forecasting yield. Trend of irrigated and dryland crops was analyzed by employing time series statistical techniques. Some traditional linear regressions and smoothing techniques were first used to obtain the yield function. A multivariate time series modeling approach was conducted to demonstrate how the space and time correlation information can be utilized to model and forecast yield and related variables. The conclusion from this research clearly emphasizes the importance of space and time components of data sets because they can adjust for those underlying variables and factor effects that are not measured or not well understood. N° de réf. du vendeur 9783659384226
Quantité disponible : 1 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -Space and time are often vital components of research data sets. Accounting for and utilizing the space and time information in statistical models become beneficial when the response variable in question is proved to have a space and time dependence. The objectives of this work were to investigate crop yield trends in space and time, quantify the variability in yield explained by genetics and space-time (environment) factors, and study how spatio-temporal information could be incorporated and also utilized in modeling and forecasting yield. Trend of irrigated and dryland crops was analyzed by employing time series statistical techniques. Some traditional linear regressions and smoothing techniques were first used to obtain the yield function. A multivariate time series modeling approach was conducted to demonstrate how the space and time correlation information can be utilized to model and forecast yield and related variables. The conclusion from this research clearly emphasizes the importance of space and time components of data sets because they can adjust for those underlying variables and factor effects that are not measured or not well understood.Books on Demand GmbH, Überseering 33, 22297 Hamburg 84 pp. Englisch. N° de réf. du vendeur 9783659384226
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Space and time are often vital components of research data sets. Accounting for and utilizing the space and time information in statistical models become beneficial when the response variable in question is proved to have a space and time dependence. The objectives of this work were to investigate crop yield trends in space and time, quantify the variability in yield explained by genetics and space-time (environment) factors, and study how spatio-temporal information could be incorporated and also utilized in modeling and forecasting yield. Trend of irrigated and dryland crops was analyzed by employing time series statistical techniques. Some traditional linear regressions and smoothing techniques were first used to obtain the yield function. A multivariate time series modeling approach was conducted to demonstrate how the space and time correlation information can be utilized to model and forecast yield and related variables. The conclusion from this research clearly emphasizes the importance of space and time components of data sets because they can adjust for those underlying variables and factor effects that are not measured or not well understood. 84 pp. Englisch. N° de réf. du vendeur 9783659384226
Quantité disponible : 2 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLING22Oct2817100471789
Quantité disponible : Plus de 20 disponibles