Unveiling the Black Box: Practical Deep Learning and Explainable AI" offers a comprehensive overview of Explainable AI (XAI) techniques and their significance in ensuring transparency and trust in complex AI models. With AI applications spanning healthcare, finance, and autonomous systems, the opacity of deep learning models often raises ethical, legal, and reliability concerns. This guide explores foundational AI model structures, such as Feedforward Neural Networks (FNN), Convolutional Neural Networks (CNN), and Recurrent Neural Networks (RNN), highlighting their architecture, functionality, and real-world applications. To enhance interpretability, the text introduces leading XAI methods like Local Interpretable Model-Agnostic Explanations (LIME) and SHAPley Additive Explanations (SHAP), which enable users to understand model predictions. Advanced techniques, including Transfer Learning and Attention Mechanisms, are discussed to illustrate their impact on neural network adaptability and performance. The challenges of achieving interpretable AI, such as managing bias, balancing accuracy, and ensuring privacy, are also addressed.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 4,62 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783659396700_new
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9783659396700
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering. N° de réf. du vendeur 9783659396700
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 192 pp. Englisch. N° de réf. du vendeur 9783659396700
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -Unveiling the Black Box: Practical Deep Learning and Explainable AI' offers a comprehensive overview of Explainable AI (XAI) techniques and their significance in ensuring transparency and trust in complex AI models. With AI applications spanning healthcare, finance, and autonomous systems, the opacity of deep learning models often raises ethical, legal, and reliability concerns. This guide explores foundational AI model structures, such as Feedforward Neural Networks (FNN), Convolutional Neural Networks (CNN), and Recurrent Neural Networks (RNN), highlighting their architecture, functionality, and real-world applications. To enhance interpretability, the text introduces leading XAI methods like Local Interpretable Model-Agnostic Explanations (LIME) and SHAPley Additive Explanations (SHAP), which enable users to understand model predictions. Advanced techniques, including Transfer Learning and Attention Mechanisms, are discussed to illustrate their impact on neural network adaptability and performance. The challenges of achieving interpretable AI, such as managing bias, balancing accuracy, and ensuring privacy, are also addressed.Books on Demand GmbH, Überseering 33, 22297 Hamburg 192 pp. Englisch. N° de réf. du vendeur 9783659396700
Quantité disponible : 2 disponible(s)
Vendeur : AussieBookSeller, Truganina, VIC, Australie
Paperback. Etat : new. Paperback. Unveiling the Black Box: Practical Deep Learning and Explainable AI" offers a comprehensive overview of Explainable AI (XAI) techniques and their significance in ensuring transparency and trust in complex AI models. With AI applications spanning healthcare, finance, and autonomous systems, the opacity of deep learning models often raises ethical, legal, and reliability concerns. This guide explores foundational AI model structures, such as Feedforward Neural Networks (FNN), Convolutional Neural Networks (CNN), and Recurrent Neural Networks (RNN), highlighting their architecture, functionality, and real-world applications. To enhance interpretability, the text introduces leading XAI methods like Local Interpretable Model-Agnostic Explanations (LIME) and SHAPley Additive Explanations (SHAP), which enable users to understand model predictions. Advanced techniques, including Transfer Learning and Attention Mechanisms, are discussed to illustrate their impact on neural network adaptability and performance. The challenges of achieving interpretable AI, such as managing bias, balancing accuracy, and ensuring privacy, are also addressed. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. N° de réf. du vendeur 9783659396700
Quantité disponible : 1 disponible(s)
Vendeur : CitiRetail, Stevenage, Royaume-Uni
Paperback. Etat : new. Paperback. Unveiling the Black Box: Practical Deep Learning and Explainable AI" offers a comprehensive overview of Explainable AI (XAI) techniques and their significance in ensuring transparency and trust in complex AI models. With AI applications spanning healthcare, finance, and autonomous systems, the opacity of deep learning models often raises ethical, legal, and reliability concerns. This guide explores foundational AI model structures, such as Feedforward Neural Networks (FNN), Convolutional Neural Networks (CNN), and Recurrent Neural Networks (RNN), highlighting their architecture, functionality, and real-world applications. To enhance interpretability, the text introduces leading XAI methods like Local Interpretable Model-Agnostic Explanations (LIME) and SHAPley Additive Explanations (SHAP), which enable users to understand model predictions. Advanced techniques, including Transfer Learning and Attention Mechanisms, are discussed to illustrate their impact on neural network adaptability and performance. The challenges of achieving interpretable AI, such as managing bias, balancing accuracy, and ensuring privacy, are also addressed. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9783659396700
Quantité disponible : 1 disponible(s)
Vendeur : Grand Eagle Retail, Mason, OH, Etats-Unis
Paperback. Etat : new. Paperback. Unveiling the Black Box: Practical Deep Learning and Explainable AI" offers a comprehensive overview of Explainable AI (XAI) techniques and their significance in ensuring transparency and trust in complex AI models. With AI applications spanning healthcare, finance, and autonomous systems, the opacity of deep learning models often raises ethical, legal, and reliability concerns. This guide explores foundational AI model structures, such as Feedforward Neural Networks (FNN), Convolutional Neural Networks (CNN), and Recurrent Neural Networks (RNN), highlighting their architecture, functionality, and real-world applications. To enhance interpretability, the text introduces leading XAI methods like Local Interpretable Model-Agnostic Explanations (LIME) and SHAPley Additive Explanations (SHAP), which enable users to understand model predictions. Advanced techniques, including Transfer Learning and Attention Mechanisms, are discussed to illustrate their impact on neural network adaptability and performance. The challenges of achieving interpretable AI, such as managing bias, balancing accuracy, and ensuring privacy, are also addressed. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9783659396700
Quantité disponible : 1 disponible(s)