Articles liés à Electronic Banking Fraud Detection: Using Data Mining...

Electronic Banking Fraud Detection: Using Data Mining Techniques And R Software For Implementing Machine Learning Algorithms In Prevention Of Fraud - Couverture souple

 
9783659916878: Electronic Banking Fraud Detection: Using Data Mining Techniques And R Software For Implementing Machine Learning Algorithms In Prevention Of Fraud

Synopsis

This research work deals with the procedures for computing the presence of outliers using various distance measures and general detection performance for unsupervised machine learning, such as the K-Mean Clustering Analysis and Principal Component Analysis. A comprehensive evaluation of Data Mining Techniques, Machine Learning and Predictive modelling for Unsupervised Anomaly Detection Algorithms on Electronic Banking Transaction data sets record for over a period of six (6) months, April to September, 2015, consisting of 9 variable data fields and 8,641 observations, were used to carry out the survey on fraud detection. On completion of the underlying system, I can conclude that integrated techniques system provide better performance efficiency than a singular system. Besides, in near real-time settings, if a faster computation is required for larger data sets, just like the unlabelled data sets used for this research work, clustering based method is preferred to classification model.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Enoch Sayo Aluko, a CIE Examiner and Assessment Specialist attended University of Lagos, where he obtained B.Sc, in Education Mathematics and M.Sc., in Statistics. Besides, he has Diploma in Data Mining (SIIT) and a Certificate Course in Data Management and Visualization (Wesleyan University). He is a member of the Nigeria Mathematical Society.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter neuf

Afficher cet article
EUR 31,27

Autre devise

EUR 9,70 expédition depuis Allemagne vers France

Destinations, frais et délais

Résultats de recherche pour Electronic Banking Fraud Detection: Using Data Mining...

Image fournie par le vendeur

Sayo Enoch Aluko
ISBN 10 : 3659916870 ISBN 13 : 9783659916878
Neuf Couverture souple
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Aluko Sayo EnochEnoch Sayo Aluko, a CIE Examiner and Assessment Specialist attended University of Lagos, where he obtained B.Sc, in Education Mathematics and M.Sc., in Statistics. Besides, he has Diploma in Data Mining (SIIT) and a C. N° de réf. du vendeur 385770758

Contacter le vendeur

Acheter neuf

EUR 31,27
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Sayo Enoch Aluko
ISBN 10 : 3659916870 ISBN 13 : 9783659916878
Neuf Taschenbuch
impression à la demande

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This research work deals with the procedures for computing the presence of outliers using various distance measures and general detection performance for unsupervised machine learning, such as the K-Mean Clustering Analysis and Principal Component Analysis. A comprehensive evaluation of Data Mining Techniques, Machine Learning and Predictive modelling for Unsupervised Anomaly Detection Algorithms on Electronic Banking Transaction data sets record for over a period of six (6) months, April to September, 2015, consisting of 9 variable data fields and 8,641 observations, were used to carry out the survey on fraud detection. On completion of the underlying system, I can conclude that integrated techniques system provide better performance efficiency than a singular system. Besides, in near real-time settings, if a faster computation is required for larger data sets, just like the unlabelled data sets used for this research work, clustering based method is preferred to classification model. N° de réf. du vendeur 9783659916878

Contacter le vendeur

Acheter neuf

EUR 35,90
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Sayo Enoch Aluko
ISBN 10 : 3659916870 ISBN 13 : 9783659916878
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This research work deals with the procedures for computing the presence of outliers using various distance measures and general detection performance for unsupervised machine learning, such as the K-Mean Clustering Analysis and Principal Component Analysis. A comprehensive evaluation of Data Mining Techniques, Machine Learning and Predictive modelling for Unsupervised Anomaly Detection Algorithms on Electronic Banking Transaction data sets record for over a period of six (6) months, April to September, 2015, consisting of 9 variable data fields and 8,641 observations, were used to carry out the survey on fraud detection. On completion of the underlying system, I can conclude that integrated techniques system provide better performance efficiency than a singular system. Besides, in near real-time settings, if a faster computation is required for larger data sets, just like the unlabelled data sets used for this research work, clustering based method is preferred to classification model. 80 pp. Englisch. N° de réf. du vendeur 9783659916878

Contacter le vendeur

Acheter neuf

EUR 35,90
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Sayo Enoch Aluko
ISBN 10 : 3659916870 ISBN 13 : 9783659916878
Neuf Taschenbuch

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Neuware -This research work deals with the procedures for computing the presence of outliers using various distance measures and general detection performance for unsupervised machine learning, such as the K-Mean Clustering Analysis and Principal Component Analysis. A comprehensive evaluation of Data Mining Techniques, Machine Learning and Predictive modelling for Unsupervised Anomaly Detection Algorithms on Electronic Banking Transaction data sets record for over a period of six (6) months, April to September, 2015, consisting of 9 variable data fields and 8,641 observations, were used to carry out the survey on fraud detection. On completion of the underlying system, I can conclude that integrated techniques system provide better performance efficiency than a singular system. Besides, in near real-time settings, if a faster computation is required for larger data sets, just like the unlabelled data sets used for this research work, clustering based method is preferred to classification model.Books on Demand GmbH, Überseering 33, 22297 Hamburg 80 pp. Englisch. N° de réf. du vendeur 9783659916878

Contacter le vendeur

Acheter neuf

EUR 35,90
Autre devise
Frais de port : EUR 15
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Aluko, Sayo Enoch
ISBN 10 : 3659916870 ISBN 13 : 9783659916878
Neuf Paperback

Vendeur : Revaluation Books, Exeter, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : Brand New. 80 pages. 8.66x5.91x0.19 inches. In Stock. N° de réf. du vendeur 3659916870

Contacter le vendeur

Acheter neuf

EUR 66,46
Autre devise
Frais de port : EUR 11,54
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier