Articles liés à Regression: Models, Methods and Applications

Regression: Models, Methods and Applications - Couverture rigide

 
9783662638811: Regression: Models, Methods and Applications

Synopsis

Now in its second edition, this textbook provides an applied and unified introduction to parametric, nonparametric and semiparametric regression that closes the gap between theory and application. The most important models and methods in regression are presented on a solid formal basis, and their appropriate application is shown through numerous examples and case studies. The most important definitions and statements are concisely summarized in boxes, and the underlying data sets and code are available online on the book's dedicated website. Availability of (user-friendly) software has been a major criterion for the methods selected and presented.

The chapters address the classical linear model and its extensions, generalized linear models, categorical regression models, mixed models, nonparametric regression, structured additive regression, quantile regression and distributional regression models. Two appendices describe the required matrix algebra, as well as elements of probability calculus and statistical inference.

In this substantially revised and updated new edition the overview on regression models has been extended, and now includes the relation between regression models and machine learning, additional details on statistical inference in structured additive regression models have been added and a completely reworked chapter augments the presentation of quantile regression with a comprehensive introduction to distributional regression models. Regularization approaches are now more extensively discussed in most chapters of the book.

The book primarily targets an audience that includes students, teachers and practitioners in social, economic, and life sciences, as well as students and teachers in statistics programs, and mathematicians and computer scientists with interests in statistical modeling and data analysis. It is written at an intermediate mathematical level and assumes only knowledge of basic probability, calculus, matrix algebra and statistics.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Ludwig Fahrmeir is Professor Emeritus at the Institute of Statistics at LMU Munich, Germany. From 1995 to 2006 he was the speaker of the Collaborative Research Center 'Statistical Analysis of Discrete Structures', supported financially by the German National Science Foundation. His main research interests include semiparametric regression, longitudinal data analysis and spatial statistics, with applications ranging from social science and risk management to public health and neuroscience.

Thomas Kneib is a Professor of Statistics at the University of Göttingen, Germany, where he is the Speaker of the interdisciplinary Centre for Statistics and Vice-Speaker of the Campus Institute Data Science. He received his PhD in Statistics at LMU Munich and, during his PostDoc phase, was Visiting Professor of Applied Statistics at the University of Ulm and Substitute Professor of Statistics at the University of Göttingen. From 2009 until 2011 he was Professor of Applied Statistics at Carl von Ossietzky University Oldenburg. His main research interests include semiparametric regression, spatial statistics and distributional regression.

Stefan Lang is a Professor of Applied Statistics at the University of Innsbruck, Austria. He received his PhD at LMU Munich. From 2005 to 2006 he was Professor of Statistics at the University of Leipzig. He is currently Associate Editor of the journal Statistical Modelling. His main research interests include semiparametric and spatial regression, multilevel modelling and complex Bayesian models, with applications, among others, in development economics, environmetrics, marketing science, real estate and actuarial science.

Brian D. Marx was Professor at the Department of Experimental Statistics at Louisiana State University, LA, USA. He passed away shortly after the authors finished the work on this 2nd edition. His main research interests included P-spline smoothing, ill-conditioned regression problems, and high-dimensional chemometric applications. He was serving as Coordinating Editor for the journal Statistical Modelling for many years, was Chair of the Statistical Modelling Society, and a Fellow of the American Statistical Association.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

état :  Assez bon
Cover and edges may have some wear...
Afficher cet article
EUR 92,49

Autre devise

EUR 12,28 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 132,75

Autre devise

EUR 9,70 expédition depuis Allemagne vers France

Destinations, frais et délais

Autres éditions populaires du même titre

9783662638842: Regression: Models, Methods and Applications

Edition présentée

ISBN 10 :  3662638843 ISBN 13 :  9783662638842
Editeur : Springer-Verlag Berlin and Heide..., 2023
Couverture souple

Résultats de recherche pour Regression: Models, Methods and Applications

Image d'archives

Fahrmeir, Ludwig,Kneib, Thomas,Lang, Stefan,Marx, Brian D.
Edité par Springer, 2022
ISBN 10 : 3662638819 ISBN 13 : 9783662638811
Ancien ou d'occasion Couverture rigide

Vendeur : Books From California, Simi Valley, CA, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

hardcover. Etat : Very Good. Cover and edges may have some wear. N° de réf. du vendeur mon0003685752

Contacter le vendeur

Acheter D'occasion

EUR 92,49
Autre devise
Frais de port : EUR 12,28
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Fahrmeir, Ludwig|Kneib, Thomas|Lang, Stefan|Marx, Brian D.
ISBN 10 : 3662638819 ISBN 13 : 9783662638811
Neuf Couverture rigide
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Gebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Now in its second edition, this textbook provides an applied and unified introduction to parametric, nonparametric and semiparametric regression that closes the gap between theory and application. The most important models and methods in regression are p. N° de réf. du vendeur 483497651

Contacter le vendeur

Acheter neuf

EUR 132,75
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Fahrmeir, Ludwig; Kneib, Thomas; Lang, Stefan; Marx, Brian D.
Edité par Springer, 2022
ISBN 10 : 3662638819 ISBN 13 : 9783662638811
Ancien ou d'occasion Couverture rigide

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 44371896

Contacter le vendeur

Acheter D'occasion

EUR 153,25
Autre devise
Frais de port : EUR 16,93
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Ludwig Fahrmeir
ISBN 10 : 3662638819 ISBN 13 : 9783662638811
Neuf Couverture rigide

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Now in its second edition, this textbook provides an applied and unified introduction to parametric, nonparametric and semiparametric regression that closes the gap between theory and application. The most important models and methods in regression are presented on a solid formal basis, and their appropriate application is shown through numerous examples and case studies. The most important definitions and statements are concisely summarized in boxes, and the underlying data sets and code are available online on the book's dedicated website. Availability of (user-friendly) software has been a major criterion for the methods selected and presented.The chapters address the classical linear model and its extensions, generalized linear models, categorical regression models, mixed models, nonparametric regression, structured additive regression, quantile regression and distributional regression models. Two appendices describe the required matrix algebra, as well as elements of probability calculus and statistical inference.In this substantially revised and updated new edition the overview on regression models has been extended, and now includes the relation between regression models and machine learning, additional details on statistical inference in structured additive regression models have been added and a completely reworked chapter augments the presentation of quantile regression with a comprehensive introduction to distributional regression models. Regularization approaches are now more extensively discussed in most chapters of the book.The book primarily targets an audience that includes students, teachers and practitioners in social, economic, and life sciences, as well as students and teachers in statistics programs, and mathematicians and computer scientists with interests in statistical modeling and data analysis. It is written at an intermediate mathematical level and assumes only knowledge of basic probability, calculus, matrix algebra and statistics. N° de réf. du vendeur 9783662638811

Contacter le vendeur

Acheter neuf

EUR 160,49
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Ludwig Fahrmeir
ISBN 10 : 3662638819 ISBN 13 : 9783662638811
Neuf Couverture rigide
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Now in its second edition, this textbook provides an applied and unified introduction to parametric, nonparametric and semiparametric regression that closes the gap between theory and application. The most important models and methods in regression are presented on a solid formal basis, and their appropriate application is shown through numerous examples and case studies. The most important definitions and statements are concisely summarized in boxes, and the underlying data sets and code are available online on the book's dedicated website. Availability of (user-friendly) software has been a major criterion for the methods selected and presented.The chapters address the classical linear model and its extensions, generalized linear models, categorical regression models, mixed models, nonparametric regression, structured additive regression, quantile regression and distributional regression models. Two appendices describe the required matrix algebra, as well as elements of probability calculus and statistical inference.In this substantially revised and updated new edition the overview on regression models has been extended, and now includes the relation between regression models and machine learning, additional details on statistical inference in structured additive regression models have been added and a completely reworked chapter augments the presentation of quantile regression with a comprehensive introduction to distributional regression models. Regularization approaches are now more extensively discussed in most chapters of the book.The book primarily targets an audience that includes students, teachers and practitioners in social, economic, and life sciences, as well as students and teachers in statistics programs, and mathematicians and computer scientists with interests in statistical modeling and data analysis. It is written at an intermediate mathematical level and assumes only knowledge of basic probability, calculus, matrix algebra and statistics. 768 pp. Englisch. N° de réf. du vendeur 9783662638811

Contacter le vendeur

Acheter neuf

EUR 160,49
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Fahrmeir, Ludwig; Kneib, Thomas; Lang, Stefan; Marx, Brian D.
Edité par Springer, 2022
ISBN 10 : 3662638819 ISBN 13 : 9783662638811
Neuf Couverture rigide

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9783662638811_new

Contacter le vendeur

Acheter neuf

EUR 166,97
Autre devise
Frais de port : EUR 4,65
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Fahrmeir, Ludwig; Kneib, Thomas; Lang, Stefan; Marx, Brian D.
Edité par Springer, 2022
ISBN 10 : 3662638819 ISBN 13 : 9783662638811
Neuf Couverture rigide

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 44371896-n

Contacter le vendeur

Acheter neuf

EUR 157,75
Autre devise
Frais de port : EUR 16,93
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Ludwig Fahrmeir
ISBN 10 : 3662638819 ISBN 13 : 9783662638811
Neuf Couverture rigide

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Neuware -Now in its second edition, this textbook provides an applied and unified introduction to parametric, nonparametric and semiparametric regression that closes the gap between theory and application. The most important models and methods in regression are presented on a solid formal basis, and their appropriate application is shown through numerous examples and case studies. The most important definitions and statements are concisely summarized in boxes, and the underlying data sets and code are available online on the book¿s dedicated website. Availability of (user-friendly) software has been a major criterion for the methods selected and presented.The chapters address the classical linear model and its extensions, generalized linear models, categorical regression models, mixed models, nonparametric regression, structured additive regression, quantile regression and distributional regression models. Two appendices describe the required matrix algebra, as well as elements of probability calculus and statistical inference.In this substantially revised and updated new edition the overview on regression models has been extended, and now includes the relation between regression models and machine learning, additional details on statistical inference in structured additive regression models have been added and a completely reworked chapter augments the presentation of quantile regression with a comprehensive introduction to distributional regression models. Regularization approaches are now more extensively discussed in most chapters of the book.The book primarily targets an audience that includes students, teachers and practitioners in social, economic, and life sciences, as well as students and teachers in statistics programs, and mathematicians and computer scientists with interests in statistical modeling and data analysis. It is written at an intermediate mathematical level and assumes only knowledge of basic probability, calculus, matrix algebra and statistics.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 768 pp. Englisch. N° de réf. du vendeur 9783662638811

Contacter le vendeur

Acheter neuf

EUR 160,49
Autre devise
Frais de port : EUR 15
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Fahrmeir, Ludwig; Kneib, Thomas; Lang, Stefan; Marx, Brian D.
Edité par Springer, 2022
ISBN 10 : 3662638819 ISBN 13 : 9783662638811
Neuf Couverture rigide

Vendeur : California Books, Miami, FL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur I-9783662638811

Contacter le vendeur

Acheter neuf

EUR 176,23
Autre devise
Frais de port : EUR 6,78
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Fahrmeir, Ludwig; Kneib, Thomas; Lang, Stefan; Marx, Brian D.
Edité par Springer, 2022
ISBN 10 : 3662638819 ISBN 13 : 9783662638811
Neuf Couverture rigide

Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 44371896-n

Contacter le vendeur

Acheter neuf

EUR 165,79
Autre devise
Frais de port : EUR 17,47
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

There are 4 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre