Deep Learning muss nicht kompliziert sein. Mit diesem Buch lernst du anhand vieler Beispiele alle Grundlagen, die du brauchst, um Deep-Learning-Algorithmen zu verstehen und anzuwenden. Dafür brauchst du nichts weiter als Schulmathematik und Kenntnisse der Programmiersprache Python. Alle Codebeispiele werden ausführlich erläutert und mathematische Hintergründe anhand von Analogien veranschaulicht.
Der Autor erklärt leicht verständlich, wie Neuronale Netze lernen und wie sie mit Machine-Learning-Verfahren trainiert werden können. Du erfährst, wie du dein erstes Neuronales Netz erstellst und wie es mit Deep-Learning-Algorithmen Bilder erkennen sowie natürliche Sprache verarbeiten und modellieren kann. Hierbei kommen Netze mit mehreren Schichten wie CNNs und RNNs zum Einsatz.
Fokus des Buches ist es, Neuronale Netze zu trainieren, ohne auf vorgefertigte Python-Frameworks zurückzugreifen. So verstehst du Deep Learning von Grund auf und kannst in Zukunft auch komplexe Frameworks erfolgreich für deine Projekte einsetzen.
Aus dem Inhalt:Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Andrew W. Trask ist Doktorand an der Oxford University und als Research Scientist für DeepMind tätig. Zuvor war er Researcher und Analytics Product Manager bei Digital Reasoning, wo er das größte künstliche Neuronale Netz der Welt trainierte und für die Analytics Roadmap der Synthesys Cognitive Computing Platform verantwortlich war.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 3 expédition depuis Allemagne vers France
Destinations, frais et délaisEUR 7,95 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : medimops, Berlin, Allemagne
Etat : good. Befriedigend/Good: Durchschnittlich erhaltenes Buch bzw. Schutzumschlag mit Gebrauchsspuren, aber vollständigen Seiten. / Describes the average WORN book or dust jacket that has all the pages present. N° de réf. du vendeur M03747500153-G
Quantité disponible : 1 disponible(s)
Vendeur : Wegmann1855, Zwiesel, Allemagne
Taschenbuch. Etat : Neu. Neuware -Aus dem Inhalt: N° de réf. du vendeur 9783747500156
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Von den Grundlagen Neuronaler Netze ueber Machine Learning bis hin zu Deep-Learning-AlgorithmenAnschauliche Diagramme, Anwendungsbeispiele in Python und der Einsatz von NumPyKeine Vorkenntnisse in Machine Learning o. N° de réf. du vendeur 310213776
Quantité disponible : 3 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Neuware - Von den Grundlagen Neuronaler Netze über Machine Learning bis hin zu Deep-Learning-AlgorithmenAnschauliche Diagramme, Anwendungsbeispiele in Python und der Einsatz von NumPyKeine Vorkenntnisse in Machine Learning oder höherer Mathematik erforderlichDeep Learning muss nicht kompliziert sein. Mit diesem Buch lernst du anhand vieler Beispiele alle Grundlagen, die du brauchst, um Deep-Learning-Algorithmen zu verstehen und anzuwenden. Dafür brauchst du nichts weiter als Schulmathematik und Kenntnisse der Programmiersprache Python. Alle Codebeispiele werden ausführlich erläutert und mathematische Hintergründe anhand von Analogien veranschaulicht. Der Autor erklärt leicht verständlich, wie Neuronale Netze lernen und wie sie mit Machine-Learning-Verfahren trainiert werden können. Du erfährst, wie du dein erstes Neuronales Netz erstellst und wie es mit Deep-Learning-Algorithmen Bilder erkennen sowie natürliche Sprache verarbeiten und modellieren kann. Hierbei kommen Netze mit mehreren Schichten wie CNNs und RNNs zum Einsatz. Fokus des Buches ist es, Neuronale Netze zu trainieren, ohne auf vorgefertigte Python-Frameworks zurückzugreifen. So verstehst du Deep Learning von Grund auf und kannst in Zukunft auch komplexe Frameworks erfolgreich für deine Projekte einsetzen.Aus dem Inhalt:Parametrische und nichtparametrische ModelleÜberwachtes und unüberwachtes LernenVorhersagen mit mehreren Ein- und AusgabenFehler messen und verringernHot und Cold LearningBatch- und stochastischer GradientenabstiegÜberanpassung vermeidenGeneralisierungDropout-VerfahrenBackpropagation und Forward PropagationBilderkennungVerarbeitung natürlicher Sprache (NLP)SprachmodellierungAktivierungsfunktionenSigmoid-FunktionTangens hyperbolicusSoftmaxConvolutional Neural Networks (CNNs)Recurrent Neural Networks (RNNs)Long Short-Term Memory (LSTM)Deep-Learning-Framework erstellen. N° de réf. du vendeur 9783747500156
Quantité disponible : 2 disponible(s)
Vendeur : Rheinberg-Buch Andreas Meier eK, Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. Neuware -Von den Grundlagen Neuronaler Netze über Machine Learning bis hin zu Deep-Learning-AlgorithmenAnschauliche Diagramme, Anwendungsbeispiele in Python und der Einsatz von NumPyKeine Vorkenntnisse in Machine Learning oder höherer Mathematik erforderlichDeep Learning muss nicht kompliziert sein. Mit diesem Buch lernst du anhand vieler Beispiele alle Grundlagen, die du brauchst, um Deep-Learning-Algorithmen zu verstehen und anzuwenden. Dafür brauchst du nichts weiter als Schulmathematik und Kenntnisse der Programmiersprache Python. Alle Codebeispiele werden ausführlich erläutert und mathematische Hintergründe anhand von Analogien veranschaulicht. Der Autor erklärt leicht verständlich, wie Neuronale Netze lernen und wie sie mit Machine-Learning-Verfahren trainiert werden können. Du erfährst, wie du dein erstes Neuronales Netz erstellst und wie es mit Deep-Learning-Algorithmen Bilder erkennen sowie natürliche Sprache verarbeiten und modellieren kann. Hierbei kommen Netze mit mehreren Schichten wie CNNs und RNNs zum Einsatz. Fokus des Buches ist es, Neuronale Netze zu trainieren, ohne auf vorgefertigte Python-Frameworks zurückzugreifen. So verstehst du Deep Learning von Grund auf und kannst in Zukunft auch komplexe Frameworks erfolgreich für deine Projekte einsetzen.Aus dem Inhalt:Parametrische und nichtparametrische ModelleÜberwachtes und unüberwachtes LernenVorhersagen mit mehreren Ein- und AusgabenFehler messen und verringernHot und Cold LearningBatch- und stochastischer GradientenabstiegÜberanpassung vermeidenGeneralisierungDropout-VerfahrenBackpropagation und Forward PropagationBilderkennungVerarbeitung natürlicher Sprache (NLP)SprachmodellierungAktivierungsfunktionenSigmoid-FunktionTangens hyperbolicusSoftmaxConvolutional Neural Networks (CNNs)Recurrent Neural Networks (RNNs)Long Short-Term Memory (LSTM)Deep-Learning-Framework erstellen 354 pp. Deutsch. N° de réf. du vendeur 9783747500156
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. Neuware -Von den Grundlagen Neuronaler Netze über Machine Learning bis hin zu Deep-Learning-AlgorithmenAnschauliche Diagramme, Anwendungsbeispiele in Python und der Einsatz von NumPyKeine Vorkenntnisse in Machine Learning oder höherer Mathematik erforderlichDeep Learning muss nicht kompliziert sein. Mit diesem Buch lernst du anhand vieler Beispiele alle Grundlagen, die du brauchst, um Deep-Learning-Algorithmen zu verstehen und anzuwenden. Dafür brauchst du nichts weiter als Schulmathematik und Kenntnisse der Programmiersprache Python. Alle Codebeispiele werden ausführlich erläutert und mathematische Hintergründe anhand von Analogien veranschaulicht. Der Autor erklärt leicht verständlich, wie Neuronale Netze lernen und wie sie mit Machine-Learning-Verfahren trainiert werden können. Du erfährst, wie du dein erstes Neuronales Netz erstellst und wie es mit Deep-Learning-Algorithmen Bilder erkennen sowie natürliche Sprache verarbeiten und modellieren kann. Hierbei kommen Netze mit mehreren Schichten wie CNNs und RNNs zum Einsatz. Fokus des Buches ist es, Neuronale Netze zu trainieren, ohne auf vorgefertigte Python-Frameworks zurückzugreifen. So verstehst du Deep Learning von Grund auf und kannst in Zukunft auch komplexe Frameworks erfolgreich für deine Projekte einsetzen.Aus dem Inhalt:Parametrische und nichtparametrische ModelleÜberwachtes und unüberwachtes LernenVorhersagen mit mehreren Ein- und AusgabenFehler messen und verringernHot und Cold LearningBatch- und stochastischer GradientenabstiegÜberanpassung vermeidenGeneralisierungDropout-VerfahrenBackpropagation und Forward PropagationBilderkennungVerarbeitung natürlicher Sprache (NLP)SprachmodellierungAktivierungsfunktionenSigmoid-FunktionTangens hyperbolicusSoftmaxConvolutional Neural Networks (CNNs)Recurrent Neural Networks (RNNs)Long Short-Term Memory (LSTM)Deep-Learning-Framework erstellen 354 pp. Deutsch. N° de réf. du vendeur 9783747500156
Quantité disponible : 1 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -Aus dem Inhalt:MITP Verlags GmbH, Augustinusstraße 9a, 50226 Frechen 354 pp. Deutsch. N° de réf. du vendeur 9783747500156
Quantité disponible : 2 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. N° de réf. du vendeur 401922189
Quantité disponible : 1 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26394487634
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 39011512
Quantité disponible : 3 disponible(s)