Im Anschluss an eine praktische Anwendung des BO-Algorithmus (Biortho- gonalisierungs-Algorithmus von C. LANCZOS [4], [5]1) machte mich Herr Prof. E. STIEFEL, ETH, auf das Problem aufmerksam, die höheren Eigenwerte direkt aus den sogenannten Schwarzsehen Konstanten zu bestimmen, das heisst ohne den Umweg über die Orthogonalisierung. Auf diese Anregung hin entwickelte der Verfasser einen Algorithmus, der die gestellte Aufgabe löst. Allerdings gab bereits A. C. AITKEN [1] eine Methode an, welche haupt- sächlich zur Auflösung algebraischer Gleichungen gedacht war, aber auch die Bestimmung höherer Eigenwerte aus Schwarzsehen Konstanten gestattet. 2 Ferner stammt von C. LANCZOS ein Algorithmus ) zur Bestimmung des charak- teristischen Polynoms einer Matrix aus Schwarzsehen Konstanten. Überdies entwickelte J. HADAMARD in seiner Dissertation [2] eine Methode zur Bestim- mung der Pole einer durch ihre Potenzreihe gegebenen Funktion. Er hat damit, wie § 1 zeigen wird, auch das eingangs erwähnte Eigenwertproblem gelöst. Wenn hier das schon gelöste Problem nochmals aufgegriffen wird, so geschieht dies deshalb, weil der entwickelte Algorithmus eine Reihe von weiteren An- wendungen gestattet und insbesondere auch wertvolle Beziehungen zur Ketten- bruchtheorie vermittelt3). Die Arbeit gliedert sich in drei Kapitel, von denen sich die Kapitel I und n mit Theorie und Anwendungen befassen, während III eine Ausdehnung des QD-Algorithmus auf Vektoren behandelt. Schliesslich folgt ein Anhang über verwandte Methoden (insbesondere die LR-Transformation). Die Kapitel I, n, In sind einzeln bereits in der ZAMP erschienen'), doch ist zu beachten, dass I und n zum Teil erhebliche Veränderungen erfahren haben.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 2,27 expédition vers Etats-Unis
Destinations, frais et délaisEUR 2,27 expédition vers Etats-Unis
Destinations, frais et délaisVendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 19919949-n
Quantité disponible : 15 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Apr0316110058247
Quantité disponible : Plus de 20 disponibles
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Paperback. Etat : new. Paperback. Im Anschluss an eine praktische Anwendung des BO-Algorithmus (Biortho gonalisierungs-Algorithmus von C. LANCZOS [4], [5]1) machte mich Herr Prof. E. STIEFEL, ETH, auf das Problem aufmerksam, die hoeheren Eigenwerte direkt aus den sogenannten Schwarzsehen Konstanten zu bestimmen, das heisst ohne den Umweg ueber die Orthogonalisierung. Auf diese Anregung hin entwickelte der Verfasser einen Algorithmus, der die gestellte Aufgabe loest. Allerdings gab bereits A. C. AITKEN [1] eine Methode an, welche haupt saechlich zur Aufloesung algebraischer Gleichungen gedacht war, aber auch die Bestimmung hoeherer Eigenwerte aus Schwarzsehen Konstanten gestattet. 2 Ferner stammt von C. LANCZOS ein Algorithmus ) zur Bestimmung des charak teristischen Polynoms einer Matrix aus Schwarzsehen Konstanten. UEberdies entwickelte J. HADAMARD in seiner Dissertation [2] eine Methode zur Bestim mung der Pole einer durch ihre Potenzreihe gegebenen Funktion. Er hat damit, wie 1 zeigen wird, auch das eingangs erwaehnte Eigenwertproblem geloest. Wenn hier das schon geloeste Problem nochmals aufgegriffen wird, so geschieht dies deshalb, weil der entwickelte Algorithmus eine Reihe von weiteren An wendungen gestattet und insbesondere auch wertvolle Beziehungen zur Ketten bruchtheorie vermittelt3). Die Arbeit gliedert sich in drei Kapitel, von denen sich die Kapitel I und n mit Theorie und Anwendungen befassen, waehrend III eine Ausdehnung des QD-Algorithmus auf Vektoren behandelt. Schliesslich folgt ein Anhang ueber verwandte Methoden (insbesondere die LR-Transformation). Die Kapitel I, n, In sind einzeln bereits in der ZAMP erschienen'), doch ist zu beachten, dass I und n zum Teil erhebliche Veraenderungen erfahren haben. Die Arbeit gliedert sich in drei Kapitel, von denen sich die Kapitel I und n mit Theorie und Anwendungen befassen, waehrend III eine Ausdehnung des QD-Algorithmus auf Vektoren behandelt. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9783764303235
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 19919949
Quantité disponible : 15 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9783764303235
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In German. N° de réf. du vendeur ria9783764303235_new
Quantité disponible : Plus de 20 disponibles
Vendeur : Chiron Media, Wallingford, Royaume-Uni
Paperback. Etat : New. N° de réf. du vendeur 6666-IUK-9783764303235
Quantité disponible : 10 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 82. N° de réf. du vendeur 2697107499
Quantité disponible : 4 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Im Anschluss an eine praktische Anwendung des BO-Algorithmus (Biortho gonalisierungs-Algorithmus von C. LANCZOS [4], [5]1) machte mich Herr Prof. E. STIEFEL, ETH, auf das Problem aufmerksam, die höheren Eigenwerte direkt aus den sogenannten Schwarzsehen Konstanten zu bestimmen, das heisst ohne den Umweg über die Orthogonalisierung. Auf diese Anregung hin entwickelte der Verfasser einen Algorithmus, der die gestellte Aufgabe löst. Allerdings gab bereits A. C. AITKEN [1] eine Methode an, welche haupt sächlich zur Auflösung algebraischer Gleichungen gedacht war, aber auch die Bestimmung höherer Eigenwerte aus Schwarzsehen Konstanten gestattet. 2 Ferner stammt von C. LANCZOS ein Algorithmus ) zur Bestimmung des charak teristischen Polynoms einer Matrix aus Schwarzsehen Konstanten. Überdies entwickelte J. HADAMARD in seiner Dissertation [2] eine Methode zur Bestim mung der Pole einer durch ihre Potenzreihe gegebenen Funktion. Er hat damit, wie 1 zeigen wird, auch das eingangs erwähnte Eigenwertproblem gelöst. Wenn hier das schon gelöste Problem nochmals aufgegriffen wird, so geschieht dies deshalb, weil der entwickelte Algorithmus eine Reihe von weiteren An wendungen gestattet und insbesondere auch wertvolle Beziehungen zur Ketten bruchtheorie vermittelt3). Die Arbeit gliedert sich in drei Kapitel, von denen sich die Kapitel I und n mit Theorie und Anwendungen befassen, während III eine Ausdehnung des QD-Algorithmus auf Vektoren behandelt. Schliesslich folgt ein Anhang über verwandte Methoden (insbesondere die LR-Transformation). Die Kapitel I, n, In sind einzeln bereits in der ZAMP erschienen'), doch ist zu beachten, dass I und n zum Teil erhebliche Veränderungen erfahren haben. 77 pp. Deutsch. N° de réf. du vendeur 9783764303235
Quantité disponible : 2 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 82 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. N° de réf. du vendeur 96338420
Quantité disponible : 4 disponible(s)