In the last ?fteen years two seemingly unrelated problems, one in computer science and the other in measure theory, were solved by amazingly similar techniques from representation theory and from analytic number theory. One problem is the - plicit construction of expanding graphs («expanders»). These are highly connected sparse graphs whose existence can be easily demonstrated but whose explicit c- struction turns out to be a dif?cult task. Since expanders serve as basic building blocks for various distributed networks, an explicit construction is highly des- able. The other problem is one posed by Ruziewicz about seventy years ago and studied by Banach [Ba]. It asks whether the Lebesgue measure is the only ?nitely additive measure of total measure one, de?ned on the Lebesgue subsets of the n-dimensional sphere and invariant under all rotations. The two problems seem, at ?rst glance, totally unrelated. It is therefore so- what surprising that both problems were solved using similar methods: initially, Kazhdan's property (T) from representation theory of semi-simple Lie groups was applied in both cases to achieve partial results, and later on, both problems were solved using the (proved) Ramanujan conjecture from the theory of automorphic forms. The fact that representation theory and automorphic forms have anything to do with these problems is a surprise and a hint as well that the two questions are strongly related.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Unifying concepts from various fields within mathematics, this volume offers solutions to two known problems – the construction of expanding graphs and the Ruziewicz problem, concerning the finitely additive invariant measures of spheres.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 9,90 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : Buchpark, Trebbin, Allemagne
Etat : Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher. N° de réf. du vendeur 552391/202
Quantité disponible : 1 disponible(s)
Vendeur : Antiquariat Bernhardt, Kassel, Allemagne
Karton. Etat : Sehr gut. Zust: Gutes Exemplar. 195 Seiten, mit Abbildungen, Englisch 482g. N° de réf. du vendeur 494935
Quantité disponible : 1 disponible(s)
Vendeur : Antiquariat Deinbacher, Murstetten, Autriche
8° , Hardcover/Pappeinband. 1.Auflage,. xi, 195 Seiten Einband etwas berieben, Bibl.Ex., innen guter und sauberer Zustand 9783764350758 Sprache: Englisch Gewicht in Gramm: 481. N° de réf. du vendeur 169786
Quantité disponible : 1 disponible(s)
Vendeur : David Bunnett Books, London, Royaume-Uni
HARDCOVER. Etat : As New. 1st Edition. 1st printing. 8vo in printed boards, 195pp, index . [CONDITION: An extremely well preserved AS NEW unread and unmarked copy ] . __To see more of our Science and Engineering books type DbbSCIENCE in the Keywords search box . . We always ship in STRONG PROTECTIVE CARD PARCELS. N° de réf. du vendeur T1803556
Quantité disponible : 1 disponible(s)