0 Introduction.- 1 Auxiliary Results.- 2 Maximization of Functionals in H? [a, b] and Perfect ?-Splines.- 3 Fredholm Kernels.- 4 Review of Classical Chebyshev Polynomial Splines.- 5 Additive Kolmogorov-Landau Inequalities.- 6 Proof of the Main Result.- 7 Properties of Chebyshev ?-Splines.- 8 Chebyshev ?-Splines on the Half-line ?+.- 9 Maximization of Integral Functional in H?[a1, a2], -? ? a1
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 9,90 expédition depuis Allemagne vers France
Destinations, frais et délaisEUR 11 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : Buchpark, Trebbin, Allemagne
Etat : Sehr gut. Zustand: Sehr gut | Seiten: 224 | Sprache: Englisch | Produktart: Bücher. N° de réf. du vendeur 107820/202
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This monograph describes advances in the theory of extremal problems in classes of functions defined by a majorizing modulus of continuity w. In particular, an extensive account is given of structural, limiting, and extremal properties of perfect w-splines generalizing standard polynomial perfect splines in the theory of Sobolev classes. In this context special attention is paid to the qualitative description of Chebyshev w-splines and w-polynomials associated with the Kolmogorov problem of n-widths and sharp additive inequalities between the norms of intermediate derivatives in functional classes with a bounding modulus of continuity. Since, as a rule, the techniques of the theory of Sobolev classes are inapplicable in such classes, novel geometrical methods are developed based on entirely new ideas. The book can be used profitably by pure or applied scientists looking for mathematical approaches to the solution of practical problems for which standard methods do not work. The scope of problems treated in the monograph, ranging from the maximization of integral functionals, characterization of the structure of equimeasurable functions, construction of Chebyshev splines through applications of fixed point theorems to the solution of integral equations related to the classical Euler equation, appeals to mathematicians specializing in approximation theory, functional and convex analysis, optimization, topology, and integral equations. 210 pp. Englisch. N° de réf. du vendeur 9783764359843
Quantité disponible : 2 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783764359843_new
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This monograph describes advances in the theory of extremal problems in classes of functions defined by a majorizing modulus of continuity w. In particular, an extensive account is given of structural, limiting, and extremal properties of perfect w-splines generalizing standard polynomial perfect splines in the theory of Sobolev classes. In this context special attention is paid to the qualitative description of Chebyshev w-splines and w-polynomials associated with the Kolmogorov problem of n-widths and sharp additive inequalities between the norms of intermediate derivatives in functional classes with a bounding modulus of continuity. Since, as a rule, the techniques of the theory of Sobolev classes are inapplicable in such classes, novel geometrical methods are developed based on entirely new ideas. The book can be used profitably by pure or applied scientists looking for mathematical approaches to the solution of practical problems for which standard methods do not work. The scope of problems treated in the monograph, ranging from the maximization of integral functionals, characterization of the structure of equimeasurable functions, construction of Chebyshev splines through applications of fixed point theorems to the solution of integral equations related to the classical Euler equation, appeals to mathematicians specializing in approximation theory, functional and convex analysis, optimization, topology, and integral equations. N° de réf. du vendeur 9783764359843
Quantité disponible : 2 disponible(s)
Vendeur : Best Price, Torrance, CA, Etats-Unis
Etat : New. SUPER FAST SHIPPING. N° de réf. du vendeur 9783764359843
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Gebunden. Etat : New. This monograph describes advances in the theory of extremal problems in classes of functions defined by a majorizing modulus of continuity w. In particular, an extensive account is given of structural, limiting, and extremal properties of perfect w-splines . N° de réf. du vendeur 908772803
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9783764359843
Quantité disponible : Plus de 20 disponibles
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Hardcover. Etat : Brand New. 205 pages. 9.00x6.75x0.50 inches. In Stock. N° de réf. du vendeur x-3764359846
Quantité disponible : 2 disponible(s)