Genetic algorithms (GAs) and simulated annealing (SA) are important search methods. Combining both may improve the search quality, for example by using SA as a genetic operator. One problem in such technique is to find annealing parameters that work for all stages of the run. In this research, we introduce a new adaptive hybrid GA-SA algorithm, in which SA acts as a mutation. However, the SA will be adaptive in the sense that its parameters are evolved during the search. Adaptation should help guide the search towards optimum solutions with minimum parameter tuning. The algorithm is tested on solving an important NP-hard problem, the MAP (Maximum a-Posteriori) Assignment Problem on BBNs (Bayesian Belief Networks). The results obtained indicate that the adaptive hybrid algorithm provides an improvement of solution quality over that obtained by GA used alone and GA augmented with standard non-adaptive SA. Its effect, however, is more profound for large problems, which are difficult for GA alone to solve. The techniques reported in this book should be of interest to researchers in heuristics and meta-heuristics, and their application to combinatorial optimization problems.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Genetic algorithms (GAs) and simulated annealing (SA) are important search methods. Combining both may improve the search quality, for example by using SA as a genetic operator. One problem in such technique is to find annealing parameters that work for all stages of the run. In this research, we introduce a new adaptive hybrid GA-SA algorithm, in which SA acts as a mutation. However, the SA will be adaptive in the sense that its parameters are evolved during the search. Adaptation should help guide the search towards optimum solutions with minimum parameter tuning. The algorithm is tested on solving an important NP-hard problem, the MAP (Maximum a-Posteriori) Assignment Problem on BBNs (Bayesian Belief Networks). The results obtained indicate that the adaptive hybrid algorithm provides an improvement of solution quality over that obtained by GA used alone and GA augmented with standard non-adaptive SA. Its effect, however, is more profound for large problems, which are difficult for GA alone to solve. The techniques reported in this book should be of interest to researchers in heuristics and meta-heuristics, and their application to combinatorial optimization problems.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 28,88 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Genetic algorithms (GAs) and simulated annealing (SA) are important search methods. Combining both may improve the search quality, for example by using SA as a genetic operator. One problem in such technique is to find annealing parameters that work for all. N° de réf. du vendeur 5414098
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Genetic algorithms (GAs) and simulated annealing (SA) are important search methods. Combining both may improve the search quality, for example by using SA as a genetic operator. One problem in such technique is to find annealing parameters that work for all stages of the run. In this research, we introduce a new adaptive hybrid GA-SA algorithm, in which SA acts as a mutation. However, the SA will be adaptive in the sense that its parameters are evolved during the search. Adaptation should help guide the search towards optimum solutions with minimum parameter tuning. The algorithm is tested on solving an important NP-hard problem, the MAP (Maximum a-Posteriori) Assignment Problem on BBNs (Bayesian Belief Networks). The results obtained indicate that the adaptive hybrid algorithm provides an improvement of solution quality over that obtained by GA used alone and GA augmented with standard non-adaptive SA. Its effect, however, is more profound for large problems, which are difficult for GA alone to solve. The techniques reported in this book should be of interest to researchers in heuristics and meta-heuristics, and their application to combinatorial optimization problems. N° de réf. du vendeur 9783838335292
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Genetic algorithms (GAs) and simulated annealing (SA) are important search methods. Combining both may improve the search quality, for example by using SA as a genetic operator. One problem in such technique is to find annealing parameters that work for all stages of the run. In this research, we introduce a new adaptive hybrid GA-SA algorithm, in which SA acts as a mutation. However, the SA will be adaptive in the sense that its parameters are evolved during the search. Adaptation should help guide the search towards optimum solutions with minimum parameter tuning. The algorithm is tested on solving an important NP-hard problem, the MAP (Maximum a-Posteriori) Assignment Problem on BBNs (Bayesian Belief Networks). The results obtained indicate that the adaptive hybrid algorithm provides an improvement of solution quality over that obtained by GA used alone and GA augmented with standard non-adaptive SA. Its effect, however, is more profound for large problems, which are difficult for GA alone to solve. The techniques reported in this book should be of interest to researchers in heuristics and meta-heuristics, and their application to combinatorial optimization problems. 176 pp. Englisch. N° de réf. du vendeur 9783838335292
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -Genetic algorithms (GAs) and simulated annealing (SA) are important search methods. Combining both may improve the search quality, for example by using SA as a genetic operator. One problem in such technique is to find annealing parameters that work for all stages of the run. In this research, we introduce a new adaptive hybrid GA-SA algorithm, in which SA acts as a mutation. However, the SA will be adaptive in the sense that its parameters are evolved during the search. Adaptation should help guide the search towards optimum solutions with minimum parameter tuning. The algorithm is tested on solving an important NP-hard problem, the MAP (Maximum a-Posteriori) Assignment Problem on BBNs (Bayesian Belief Networks). The results obtained indicate that the adaptive hybrid algorithm provides an improvement of solution quality over that obtained by GA used alone and GA augmented with standard non-adaptive SA. Its effect, however, is more profound for large problems, which are difficult for GA alone to solve. The techniques reported in this book should be of interest to researchers in heuristics and meta-heuristics, and their application to combinatorial optimization problems.Books on Demand GmbH, Überseering 33, 22297 Hamburg 176 pp. Englisch. N° de réf. du vendeur 9783838335292
Quantité disponible : 1 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 176. N° de réf. du vendeur 26128847168
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 176 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam. N° de réf. du vendeur 131707551
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND pp. 176. N° de réf. du vendeur 18128847178
Quantité disponible : 4 disponible(s)
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
Paperback. Etat : Like New. Like New. book. N° de réf. du vendeur ERICA79038383352956
Quantité disponible : 1 disponible(s)