Articles liés à Bayesian Variable Selection for High Dimensional Data...

Bayesian Variable Selection for High Dimensional Data Analysis: methods and Applications - Couverture souple

 
9783846505717: Bayesian Variable Selection for High Dimensional Data Analysis: methods and Applications

Synopsis

In the practice of statistical modeling, it is often desirable to have an accurate predictive model. Modern data sets usually have a large number of predictors.Hence parsimony is especially an important issue. Best-subset selection is a conventional method of variable selection. Due to the large number of variables with relatively small sample size and severe collinearity among the variables, standard statistical methods for selecting relevant variables often face difficulties. Bayesian stochastic search variable selection has gained much empirical success in a variety of applications. This book, therefore, proposes a modified Bayesian stochastic variable selection approach for variable selection and two/multi-class classification based on a (multinomial) probit regression model.We demonstrate the performance of the approach via many real data. The results show that our approach selects smaller numbers of relevant variables and obtains competitive classification accuracy based on obtained results.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Présentation de l'éditeur

In the practice of statistical modeling, it is often desirable to have an accurate predictive model. Modern data sets usually have a large number of predictors.Hence parsimony is especially an important issue. Best-subset selection is a conventional method of variable selection. Due to the large number of variables with relatively small sample size and severe collinearity among the variables, standard statistical methods for selecting relevant variables often face difficulties. Bayesian stochastic search variable selection has gained much empirical success in a variety of applications. This book, therefore, proposes a modified Bayesian stochastic variable selection approach for variable selection and two/multi-class classification based on a (multinomial) probit regression model.We demonstrate the performance of the approach via many real data. The results show that our approach selects smaller numbers of relevant variables and obtains competitive classification accuracy based on obtained results.

Biographie de l'auteur

Dr. Yang Aijun: Assiatant Professor and CFA, School of Finance, Nanjing Audit University; Ph.D, The Chinese University of Hong Kong. Yang's research interests include Stock Return Predictability, Portfolio Selection, Financial Risk Management and Variable Selection.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

état :  Comme neuf
Like New
Afficher cet article
EUR 105,88

Autre devise

EUR 28,87 expédition depuis Royaume-Uni vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 41,05

Autre devise

EUR 9,70 expédition depuis Allemagne vers France

Destinations, frais et délais

Résultats de recherche pour Bayesian Variable Selection for High Dimensional Data...

Image fournie par le vendeur

Yang Aijun
ISBN 10 : 3846505714 ISBN 13 : 9783846505717
Neuf Couverture souple
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Aijun YangDr. Yang Aijun: Assiatant Professor and CFA, School of Finance, Nanjing Audit University Ph.D, The Chinese University of Hong Kong. Yang s research interests include Stock Return Predictability, Portfolio Selection, Financ. N° de réf. du vendeur 5495281

Contacter le vendeur

Acheter neuf

EUR 41,05
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Yang Aijun
ISBN 10 : 3846505714 ISBN 13 : 9783846505717
Neuf Taschenbuch
impression à la demande

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - In the practice of statistical modeling, it is often desirable to have an accurate predictive model. Modern data sets usually have a large number of predictors.Hence parsimony is especially an important issue. Best-subset selection is a conventional method of variable selection. Due to the large number of variables with relatively small sample size and severe collinearity among the variables, standard statistical methods for selecting relevant variables often face difficulties. Bayesian stochastic search variable selection has gained much empirical success in a variety of applications. This book, therefore, proposes a modified Bayesian stochastic variable selection approach for variable selection and two/multi-class classification based on a (multinomial) probit regression model.We demonstrate the performance of the approach via many real data. The results show that our approach selects smaller numbers of relevant variables and obtains competitive classification accuracy based on obtained results. N° de réf. du vendeur 9783846505717

Contacter le vendeur

Acheter neuf

EUR 49
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Yang Aijun
ISBN 10 : 3846505714 ISBN 13 : 9783846505717
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In the practice of statistical modeling, it is often desirable to have an accurate predictive model. Modern data sets usually have a large number of predictors.Hence parsimony is especially an important issue. Best-subset selection is a conventional method of variable selection. Due to the large number of variables with relatively small sample size and severe collinearity among the variables, standard statistical methods for selecting relevant variables often face difficulties. Bayesian stochastic search variable selection has gained much empirical success in a variety of applications. This book, therefore, proposes a modified Bayesian stochastic variable selection approach for variable selection and two/multi-class classification based on a (multinomial) probit regression model.We demonstrate the performance of the approach via many real data. The results show that our approach selects smaller numbers of relevant variables and obtains competitive classification accuracy based on obtained results. 92 pp. Englisch. N° de réf. du vendeur 9783846505717

Contacter le vendeur

Acheter neuf

EUR 49
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Yang Aijun
ISBN 10 : 3846505714 ISBN 13 : 9783846505717
Neuf Taschenbuch

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Neuware -In the practice of statistical modeling, it is often desirable to have an accurate predictive model. Modern data sets usually have a large number of predictors.Hence parsimony is especially an important issue. Best-subset selection is a conventional method of variable selection. Due to the large number of variables with relatively small sample size and severe collinearity among the variables, standard statistical methods for selecting relevant variables often face difficulties. Bayesian stochastic search variable selection has gained much empirical success in a variety of applications. This book, therefore, proposes a modified Bayesian stochastic variable selection approach for variable selection and two/multi-class classification based on a (multinomial) probit regression model.We demonstrate the performance of the approach via many real data. The results show that our approach selects smaller numbers of relevant variables and obtains competitive classification accuracy based on obtained results.Books on Demand GmbH, Überseering 33, 22297 Hamburg 92 pp. Englisch. N° de réf. du vendeur 9783846505717

Contacter le vendeur

Acheter neuf

EUR 49
Autre devise
Frais de port : EUR 15
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Yang Aijun
Edité par Editorial Academica Espanola, 2011
ISBN 10 : 3846505714 ISBN 13 : 9783846505717
Neuf Couverture souple

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. pp. 92. N° de réf. du vendeur 2698159441

Contacter le vendeur

Acheter neuf

EUR 66,69
Autre devise
Frais de port : EUR 7,73
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Aijun Yang
Edité par Editorial Academica Espanola, 2011
ISBN 10 : 3846505714 ISBN 13 : 9783846505717
Neuf Couverture souple
impression à la demande

Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. PRINT ON DEMAND pp. 92. N° de réf. du vendeur 1898159451

Contacter le vendeur

Acheter neuf

EUR 70,98
Autre devise
Frais de port : EUR 7,95
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Aijun Yang
Edité par Editorial Academica Espanola, 2011
ISBN 10 : 3846505714 ISBN 13 : 9783846505717
Neuf Couverture souple
impression à la demande

Vendeur : Majestic Books, Hounslow, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Print on Demand pp. 92 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam. N° de réf. du vendeur 95319182

Contacter le vendeur

Acheter neuf

EUR 69,27
Autre devise
Frais de port : EUR 10,22
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Aijun, Yang
ISBN 10 : 3846505714 ISBN 13 : 9783846505717
Ancien ou d'occasion Paperback

Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : Like New. Like New. book. N° de réf. du vendeur ERICA79638465057146

Contacter le vendeur

Acheter D'occasion

EUR 105,88
Autre devise
Frais de port : EUR 28,87
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier