The present research explores the role of generalized uncertainty inequalities in the theory of quantum gravity. Motivated from the noncommutative nature of string theory, we show that there exists an ultraviolet/ infrared mixing dependent function. From the perspective of higher derivative stringy corrections, the uncertainty principle arises as the analyticity condition of a complex function. For a given ultraviolet cutoff, this observation non-trivially modifies the algebra of quantum observables. With the postulate that Planck length is the minimal length scale in nature, our analysis is in accordance with T-duality symmetry and the existence of both the maximum and minimum length scales. Given a finite size universe, we find that the uncertainty inequalities do exist in any quantum theory. Both the Regge behavior of string spectrum and the black hole horizon area quantization are natural consequences. The role of the generalized uncertainty principle is discussed towards the effects of quantum gravity, short distance geometries, Fourier transformation, distribution theory, discretization of spacetime and thus the perspective for the geometric origin of M-theory.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
The present research explores the role of generalized uncertainty inequalities in the theory of quantum gravity. Motivated from the noncommutative nature of string theory, we show that there exists an ultraviolet/ infrared mixing dependent function. From the perspective of higher derivative stringy corrections, the uncertainty principle arises as the analyticity condition of a complex function. For a given ultraviolet cutoff, this observation non-trivially modifies the algebra of quantum observables. With the postulate that Planck length is the minimal length scale in nature, our analysis is in accordance with T-duality symmetry and the existence of both the maximum and minimum length scales. Given a finite size universe, we find that the uncertainty inequalities do exist in any quantum theory. Both the Regge behavior of string spectrum and the black hole horizon area quantization are natural consequences. The role of the generalized uncertainty principle is discussed towards the effects of quantum gravity, short distance geometries, Fourier transformation, distribution theory, discretization of spacetime and thus the perspective for the geometric origin of M-theory.
Dr. Bhupendra Nath Tiwari is postdoctoral research fellow at INFN Laboratori Nazionali di Frascati, Rome, Italy. He has carried out his doctoral research at Indian Institute Technology Kanpur, India and master studies at Jawaharlal Nehru University, New Delhi, India. His chief research interests lie in theoretical and mathematical physics.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 9,90 expédition depuis Allemagne vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : Buchpark, Trebbin, Allemagne
Etat : Sehr gut. Zustand: Sehr gut | Seiten: 68 | Sprache: Englisch | Produktart: Bücher. N° de réf. du vendeur 11239505/2
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Tiwari Bhupendra NathDr. Bhupendra Nath Tiwari is postdoctoral research fellow at INFN Laboratori Nazionali di Frascati, Rome, Italy. He has carried out his doctoral research at Indian Institute Technology Kanpur, India and master s. N° de réf. du vendeur 5495972
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The present research explores the role of generalized uncertainty inequalities in the theory of quantum gravity. Motivated from the noncommutative nature of string theory, we show that there exists an ultraviolet/ infrared mixing dependent function. From the perspective of higher derivative stringy corrections, the uncertainty principle arises as the analyticity condition of a complex function. For a given ultraviolet cutoff, this observation non-trivially modifies the algebra of quantum observables. With the postulate that Planck length is the minimal length scale in nature, our analysis is in accordance with T-duality symmetry and the existence of both the maximum and minimum length scales. Given a finite size universe, we find that the uncertainty inequalities do exist in any quantum theory. Both the Regge behavior of string spectrum and the black hole horizon area quantization are natural consequences. The role of the generalized uncertainty principle is discussed towards the effects of quantum gravity, short distance geometries, Fourier transformation, distribution theory, discretization of spacetime and thus the perspective for the geometric origin of M-theory. N° de réf. du vendeur 9783846515327
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The present research explores the role of generalized uncertainty inequalities in the theory of quantum gravity. Motivated from the noncommutative nature of string theory, we show that there exists an ultraviolet/ infrared mixing dependent function. From the perspective of higher derivative stringy corrections, the uncertainty principle arises as the analyticity condition of a complex function. For a given ultraviolet cutoff, this observation non-trivially modifies the algebra of quantum observables. With the postulate that Planck length is the minimal length scale in nature, our analysis is in accordance with T-duality symmetry and the existence of both the maximum and minimum length scales. Given a finite size universe, we find that the uncertainty inequalities do exist in any quantum theory. Both the Regge behavior of string spectrum and the black hole horizon area quantization are natural consequences. The role of the generalized uncertainty principle is discussed towards the effects of quantum gravity, short distance geometries, Fourier transformation, distribution theory, discretization of spacetime and thus the perspective for the geometric origin of M-theory. 68 pp. Englisch. N° de réf. du vendeur 9783846515327
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -The present research explores the role of generalized uncertainty inequalities in the theory of quantum gravity. Motivated from the noncommutative nature of string theory, we show that there exists an ultraviolet/ infrared mixing dependent function. From the perspective of higher derivative stringy corrections, the uncertainty principle arises as the analyticity condition of a complex function. For a given ultraviolet cutoff, this observation non-trivially modifies the algebra of quantum observables. With the postulate that Planck length is the minimal length scale in nature, our analysis is in accordance with T-duality symmetry and the existence of both the maximum and minimum length scales. Given a finite size universe, we find that the uncertainty inequalities do exist in any quantum theory. Both the Regge behavior of string spectrum and the black hole horizon area quantization are natural consequences. The role of the generalized uncertainty principle is discussed towards the effects of quantum gravity, short distance geometries, Fourier transformation, distribution theory, discretization of spacetime and thus the perspective for the geometric origin of M-theory.Books on Demand GmbH, Überseering 33, 22297 Hamburg 68 pp. Englisch. N° de réf. du vendeur 9783846515327
Quantité disponible : 2 disponible(s)
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
Paperback. Etat : Like New. Like New. book. N° de réf. du vendeur ERICA79638465153296
Quantité disponible : 1 disponible(s)