Der praktische Einstieg in PyTorch - Lernen Sie, neuronale Netze zu erstellen und sie für verschiedene Datentypen zu trainieren - Das Buch deckt den gesamten Entwicklungszyklus von Deep-Learning-Anwendungen ab: Vom Erstellen über das Debuggen bis zum Deployen - Mit Use Cases, die zeigen, wie PyTorch bei führenden Unternehmen eingesetzt wird Mit diesem Praxisbuch meistern Sie die Methoden des Deep Learning, einer Teildisziplin des Machine Learning, die die Welt um uns herum verändert. Machen Sie sich mit PyTorch, dem populären Python-Framework von Facebook, vertraut, und lernen Sie Schlüsselkonzepte und neueste Techniken kennen, um eigene neuronale Netze zu entwickeln. Ian Pointer zeigt Ihnen zunächst, wie Sie PyTorch in einer Cloud-basierten Umgebung einrichten. Er führt Sie dann durch die einzelnen Schritte der Entwicklung von neuronalen Architekturen, um typische Anwendungen für Bilder, Ton, Text und andere Datenformate zu erstellen. Er erläutert auch das innovative Konzept des Transfer Learning und das Debuggen der Modelle. Sie erfahren zudem, wie Sie Ihre Deep-Learning-Anwendungen in den Produktiveinsatz bringen. Aus dem Inhalt: - Ergründen Sie modernste Modelle für das Natural Language Processing, die mit umfangreichen Textkorpora wie dem Wikipedia-Datensatz trainiert wurden - Verwenden Sie das PyTorch-Paket torchaudio, um Audiodateien mit einem neuronalen Konvolutionsmodell zu klassifizieren - Lernen Sie, wie man Transfer Learning auf Bilder anwendet - Debuggen Sie PyTorch-Modelle mithilfe von TensorBoard und Flammendiagrammen - Deployen Sie PyTorch-Anwendungen im Produktiveinsatz in Docker-Containern und Kubernetes-Clustern, die in der Google Cloud laufen - Erkunden Sie PyTorch-Anwendungsfälle von führenden Unternehmen Für die deutsche Ausgabe wurde das Buch in Zusammenarbeit mit Ian Pointer von Marcus Fraaß aktualisiert und um einige Themen erweitert.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. German language. 9.37x6.46x0.71 inches. In Stock. N° de réf. du vendeur __3960091346
Quantité disponible : 2 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26394490446
Quantité disponible : 1 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. N° de réf. du vendeur 401919377
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. Neuware -Der praktische Einstieg in PyTorch Lernen Sie, neuronale Netze zu erstellen und sie für verschiedene Datentypen zu trainieren Das Buch deckt den gesamten Entwicklungszyklus von Deep-Learning-Anwendungen ab: Vom Erstellen über das Debuggen bis zum Deployen Mit Use Cases, die zeigen, wie PyTorch bei führenden Unternehmen eingesetzt wird Mit diesem Praxisbuch meistern Sie die Methoden des Deep Learning, einer Teildisziplin des Machine Learning, die die Welt um uns herum verändert. Machen Sie sich mit PyTorch, dem populären Python-Framework von Facebook, vertraut, und lernen Sie Schlüsselkonzepte und neueste Techniken kennen, um eigene neuronale Netze zu entwickeln. Ian Pointer zeigt Ihnen zunächst, wie Sie PyTorch in einer Cloud-basierten Umgebung einrichten. Er führt Sie dann durch die einzelnen Schritte der Entwicklung von neuronalen Architekturen, um typische Anwendungen für Bilder, Ton, Text und andere Datenformate zu erstellen. Er erläutert auch das innovative Konzept des Transfer Learning und das Debuggen der Modelle. Sie erfahren zudem, wie Sie Ihre Deep-Learning-Anwendungen in den Produktiveinsatz bringen. Aus dem Inhalt: Ergründen Sie modernste Modelle für das Natural Language Processing, die mit umfangreichen Textkorpora wie dem Wikipedia-Datensatz trainiert wurden Verwenden Sie das PyTorch-Paket torchaudio, um Audiodateien mit einem neuronalen Konvolutionsmodell zu klassifizieren Lernen Sie, wie man Transfer Learning auf Bilder anwendet Debuggen Sie PyTorch-Modelle mithilfe von TensorBoard und Flammendiagrammen Deployen Sie PyTorch-Anwendungen im Produktiveinsatz in Docker-Containern und Kubernetes-Clustern, die in der Google Cloud laufen Erkunden Sie PyTorch-Anwendungsfälle von führenden Unternehmen Für die deutsche Ausgabe wurde das Buch in Zusammenarbeit mit Ian Pointer von Marcus Fraaß aktualisiert und um einige Themen erweitert. 247 pp. Deutsch. N° de réf. du vendeur 9783960091349
Quantité disponible : 2 disponible(s)
Vendeur : Rheinberg-Buch Andreas Meier eK, Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. Neuware -Der praktische Einstieg in PyTorch Lernen Sie, neuronale Netze zu erstellen und sie für verschiedene Datentypen zu trainieren Das Buch deckt den gesamten Entwicklungszyklus von Deep-Learning-Anwendungen ab: Vom Erstellen über das Debuggen bis zum Deployen Mit Use Cases, die zeigen, wie PyTorch bei führenden Unternehmen eingesetzt wird Mit diesem Praxisbuch meistern Sie die Methoden des Deep Learning, einer Teildisziplin des Machine Learning, die die Welt um uns herum verändert. Machen Sie sich mit PyTorch, dem populären Python-Framework von Facebook, vertraut, und lernen Sie Schlüsselkonzepte und neueste Techniken kennen, um eigene neuronale Netze zu entwickeln. Ian Pointer zeigt Ihnen zunächst, wie Sie PyTorch in einer Cloud-basierten Umgebung einrichten. Er führt Sie dann durch die einzelnen Schritte der Entwicklung von neuronalen Architekturen, um typische Anwendungen für Bilder, Ton, Text und andere Datenformate zu erstellen. Er erläutert auch das innovative Konzept des Transfer Learning und das Debuggen der Modelle. Sie erfahren zudem, wie Sie Ihre Deep-Learning-Anwendungen in den Produktiveinsatz bringen. Aus dem Inhalt: Ergründen Sie modernste Modelle für das Natural Language Processing, die mit umfangreichen Textkorpora wie dem Wikipedia-Datensatz trainiert wurden Verwenden Sie das PyTorch-Paket torchaudio, um Audiodateien mit einem neuronalen Konvolutionsmodell zu klassifizieren Lernen Sie, wie man Transfer Learning auf Bilder anwendet Debuggen Sie PyTorch-Modelle mithilfe von TensorBoard und Flammendiagrammen Deployen Sie PyTorch-Anwendungen im Produktiveinsatz in Docker-Containern und Kubernetes-Clustern, die in der Google Cloud laufen Erkunden Sie PyTorch-Anwendungsfälle von führenden Unternehmen Für die deutsche Ausgabe wurde das Buch in Zusammenarbeit mit Ian Pointer von Marcus Fraaß aktualisiert und um einige Themen erweitert. 247 pp. Deutsch. N° de réf. du vendeur 9783960091349
Quantité disponible : 2 disponible(s)
Vendeur : Wegmann1855, Zwiesel, Allemagne
Taschenbuch. Etat : Neu. Neuware -Der praktische Einstieg in PyTorch. N° de réf. du vendeur 9783960091349
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. AUTOR: Pointer, IanIan Pointer ist Data Engineer. Er hat sich auf Loesungen fuer Fortune-100-Kunden spezialisiert, die auf Methoden des Machine Learnings (insbesondere Deep Learning) basieren. Ian arbeitet derzeit bei Lucidworks, wo er sich innovativ. N° de réf. du vendeur 365464441
Quantité disponible : 3 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -Der praktische Einstieg in PyTorchdpunkt.Verlag, Wieblinger Weg 17, 69123 Heidelberg 247 pp. Deutsch. N° de réf. du vendeur 9783960091349
Quantité disponible : 2 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Neuware - Der praktische Einstieg in PyTorch Lernen Sie, neuronale Netze zu erstellen und sie für verschiedene Datentypen zu trainieren Das Buch deckt den gesamten Entwicklungszyklus von Deep-Learning-Anwendungen ab: Vom Erstellen über das Debuggen bis zum Deployen Mit Use Cases, die zeigen, wie PyTorch bei führenden Unternehmen eingesetzt wird Mit diesem Praxisbuch meistern Sie die Methoden des Deep Learning, einer Teildisziplin des Machine Learning, die die Welt um uns herum verändert. Machen Sie sich mit PyTorch, dem populären Python-Framework von Facebook, vertraut, und lernen Sie Schlüsselkonzepte und neueste Techniken kennen, um eigene neuronale Netze zu entwickeln. Ian Pointer zeigt Ihnen zunächst, wie Sie PyTorch in einer Cloud-basierten Umgebung einrichten. Er führt Sie dann durch die einzelnen Schritte der Entwicklung von neuronalen Architekturen, um typische Anwendungen für Bilder, Ton, Text und andere Datenformate zu erstellen. Er erläutert auch das innovative Konzept des Transfer Learning und das Debuggen der Modelle. Sie erfahren zudem, wie Sie Ihre Deep-Learning-Anwendungen in den Produktiveinsatz bringen. Aus dem Inhalt: Ergründen Sie modernste Modelle für das Natural Language Processing, die mit umfangreichen Textkorpora wie dem Wikipedia-Datensatz trainiert wurden Verwenden Sie das PyTorch-Paket torchaudio, um Audiodateien mit einem neuronalen Konvolutionsmodell zu klassifizieren Lernen Sie, wie man Transfer Learning auf Bilder anwendet Debuggen Sie PyTorch-Modelle mithilfe von TensorBoard und Flammendiagrammen Deployen Sie PyTorch-Anwendungen im Produktiveinsatz in Docker-Containern und Kubernetes-Clustern, die in der Google Cloud laufen Erkunden Sie PyTorch-Anwendungsfälle von führenden Unternehmen Für die deutsche Ausgabe wurde das Buch in Zusammenarbeit mit Ian Pointer von Marcus Fraaß aktualisiert und um einige Themen erweitert. N° de réf. du vendeur 9783960091349
Quantité disponible : 4 disponible(s)
Vendeur : preigu, Osnabrück, Allemagne
Taschenbuch. Etat : Neu. PyTorch für Deep Learning | Anwendungen für Bild-, Ton- und Textdaten entwickeln und deployen | Ian Pointer | Taschenbuch | Animals | XXII | Deutsch | 2020 | O'Reilly | EAN 9783960091349 | Verantwortliche Person für die EU: dpunkt.verlag GmbH, Vanessa Niethammer, Wieblinger Weg 17, 69123 Heidelberg, niethammer[at]dpunkt[dot]de | Anbieter: preigu. N° de réf. du vendeur 118239677
Quantité disponible : 1 disponible(s)