Articles liés à Gaining Insight into User and Search Engine Behaviour...

Gaining Insight into User and Search Engine Behaviour by Analyzing Web Logs - Couverture souple

 
9783960670872: Gaining Insight into User and Search Engine Behaviour by Analyzing Web Logs

Synopsis

Web Usage Mining, also known as Web Log Mining, is the result of user interaction with a Web server including Web logs, click streams and database transaction or the visits of search engine crawlers at a Website. Log files provide an immense source of information about the behavior of users as well as search engine crawlers. Web Usage Mining concerns the usage of common browsing patterns, i.e. pages requested in sequence from Web logs. These patterns can be utilized to enhance the design and modification of a Website. Analyzing and discovering user behavior is helpful for understanding what online information users inquire and how they behave. The analyzed result can be used in intelligent online applications, refining Websites, improving search accuracy when seeking information and lead decision makers towards better decisions in changing markets, for instance by putting advertisements in ideal places. Similarly, the crawlers or spiders are accessing the Websites to index new and updated pages. These traces help to analyze the behavior of search engine crawlers.
The log files are unstructured files and of huge size. These files need to be extracted and pre-processed before any data mining functionality to follow. Pre-processing is done in unique ways for each application. Two pre-processing algorithms are proposed based on indiscernibility relations in rough set theory which generates Equivalence Classes. The first algorithm generates a pre-processed file with successful user requests while the second one generates a pre-processed file for pre-fetching and caching purposes. Two algorithms are proposed to extract usage analytics. The first algorithm identifies the origin of visits, the top referring sites and the most popular keywords used by the visitor to arrive at a Website. The second algorithm extracts user agents like browsers and operating systems used by a visitor to access a Website.
In this study, clustering of users based on Entry Pages to a Website is done to analyze the deep linked traffic at a Website. The Top Ten Entry Pages, the traffic and the temporal information of the Top Ten Entry Pages are also studied.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Prof. Jeeva Jose was awarded PhD in Computer Science from Mahatma Gandhi University, Kerala, India and is a faculty member at BPC College, Kerala. Her passion is teaching and areas of interests include World Wide Web, Data Mining and Cyber laws. She has been in higher education since year 2000 years and has completed three research projects funded by UGC and KSCSTE. She has authored and published five books. She has published more than twenty research papers in various refereed journals and conference proceedings. She has edited three books and has given many invited talks in various conferences. She is a recipient of ACM-W Scholarship provided by Association for Computing Machinery, New York.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter neuf

Afficher cet article
EUR 49,99

Autre devise

EUR 10,99 expédition depuis Allemagne vers France

Destinations, frais et délais

Résultats de recherche pour Gaining Insight into User and Search Engine Behaviour...

Image fournie par le vendeur

Jeeva Jose
Edité par Anchor Academic Publishing, 2016
ISBN 10 : 3960670877 ISBN 13 : 9783960670872
Neuf Taschenbuch
impression à la demande

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Web Usage Mining, also known as Web Log Mining, is the result of user interaction with a Web server including Web logs, click streams and database transaction or the visits of search engine crawlers at a Website. Log files provide an immense source of information about the behavior of users as well as search engine crawlers. Web Usage Mining concerns the usage of common browsing patterns, i.e. pages requested in sequence from Web logs. These patterns can be utilized to enhance the design and modification of a Website. Analyzing and discovering user behavior is helpful for understanding what online information users inquire and how they behave. The analyzed result can be used in intelligent online applications, refining Websites, improving search accuracy when seeking information and lead decision makers towards better decisions in changing markets, for instance by putting advertisements in ideal places. Similarly, the crawlers or spiders are accessing the Websites to index new and updated pages. These traces help to analyze the behavior of search engine crawlers.The log files are unstructured files and of huge size. These files need to be extracted and pre-processed before any data mining functionality to follow. Pre-processing is done in unique ways for each application. Two pre-processing algorithms are proposed based on indiscernibility relations in rough set theory which generates Equivalence Classes. The first algorithm generates a pre-processed file with successful user requests while the second one generates a pre-processed file for pre-fetching and caching purposes. Two algorithms are proposed to extract usage analytics. The first algorithm identifies the origin of visits, the top referring sites and the most popular keywords used by the visitor to arrive at a Website. The second algorithm extracts user agents like browsers and operating systems used by a visitor to access a Website.In this study, clustering of users based on Entry Pages to a Website is done to analyze the deep linked traffic at a Website. The Top Ten Entry Pages, the traffic and the temporal information of the Top Ten Entry Pages are also studied. N° de réf. du vendeur 9783960670872

Contacter le vendeur

Acheter neuf

EUR 49,99
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Jeeva Jose
ISBN 10 : 3960670877 ISBN 13 : 9783960670872
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Web Usage Mining, also known as Web Log Mining, is the result of user interaction with a Web server including Web logs, click streams and database transaction or the visits of search engine crawlers at a Website. Log files provide an immense source of information about the behavior of users as well as search engine crawlers. Web Usage Mining concerns the usage of common browsing patterns, i.e. pages requested in sequence from Web logs. These patterns can be utilized to enhance the design and modification of a Website. Analyzing and discovering user behavior is helpful for understanding what online information users inquire and how they behave. The analyzed result can be used in intelligent online applications, refining Websites, improving search accuracy when seeking information and lead decision makers towards better decisions in changing markets, for instance by putting advertisements in ideal places. Similarly, the crawlers or spiders are accessing the Websites to index new and updated pages. These traces help to analyze the behavior of search engine crawlers.The log files are unstructured files and of huge size. These files need to be extracted and pre-processed before any data mining functionality to follow. Pre-processing is done in unique ways for each application. Two pre-processing algorithms are proposed based on indiscernibility relations in rough set theory which generates Equivalence Classes. The first algorithm generates a pre-processed file with successful user requests while the second one generates a pre-processed file for pre-fetching and caching purposes. Two algorithms are proposed to extract usage analytics. The first algorithm identifies the origin of visits, the top referring sites and the most popular keywords used by the visitor to arrive at a Website. The second algorithm extracts user agents like browsers and operating systems used by a visitor to access a Website.In this study, clustering of users based on Entry Pages to a Website is done to analyze the deep linked traffic at a Website. The Top Ten Entry Pages, the traffic and the temporal information of the Top Ten Entry Pages are also studied. 212 pp. Englisch. N° de réf. du vendeur 9783960670872

Contacter le vendeur

Acheter neuf

EUR 49,99
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Jeeva Jose
ISBN 10 : 3960670877 ISBN 13 : 9783960670872
Neuf Taschenbuch
impression à la demande

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -Web Usage Mining, also known as Web Log Mining, is the result of user interaction with a Web server including Web logs, click streams and database transaction or the visits of search engine crawlers at a Website. Log files provide immense source of information about the behavior of users as well as search engine crawlers. Web Usage Mining concerns usage of common browsing patterns i.e. pages requested in sequence from Web logs. These patterns can be utilized to enhance the design and modification of a Website. Analyzing and discovering user behavior is helpful for understanding what online information users inquire and how they behave. The analyzed result can be used in intelligent online applications, refining Websites, improving search accuracy when seeking information and lead decision makers towards better decisions in changing markets like putting advertisements in ideal places. Similarly, the crawlers or spiders are accessing the Websites to index new and updated pages. These traces help to analyze the behavior of search engine crawlers.The log files are unstructured files and of huge size. These files need to be extracted and pre-processed before any data mining functionality to follow. Pre-processing is done in unique ways for each application. Two pre-processing algorithms are proposed based on indiscernibility relations in rough set theory which generates Equivalence Classes. The first algorithm generates a pre-processed file with successful user requests while the second one generates a pre-processed file for pre-fetching and caching purposes. Two algorithms are proposed to extract usage analytics. The first algorithm identifies the origin of visits, the top referring sites and the most popular keywords used by the visitor to arrive at a Website. The second algorithm extracts user agents like browser with its version and operating system with its version used by a visitor to access a Website.In this study, clustering of users based on Entry Pages to a Website is done to analyze the deep linked traffic at a Website. The Top Ten Entry Pages, the traffic and the temporal information of the Top Ten Entry Pages are also studied.Diplomica Verlag, Hermannstal 119k, 22119 Hamburg 212 pp. Englisch. N° de réf. du vendeur 9783960670872

Contacter le vendeur

Acheter neuf

EUR 49,99
Autre devise
Frais de port : EUR 15
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Jeeva Jose (u. a.)
Edité par Anchor Academic Publishing, 2016
ISBN 10 : 3960670877 ISBN 13 : 9783960670872
Neuf Taschenbuch

Vendeur : preigu, Osnabrück, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Gaining Insight into User and Search Engine Behaviour by Analyzing Web Logs | Jeeva Jose (u. a.) | Taschenbuch | 212 S. | Englisch | 2016 | Anchor Academic Publishing | EAN 9783960670872 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. N° de réf. du vendeur 107753923

Contacter le vendeur

Acheter neuf

EUR 49,99
Autre devise
Frais de port : EUR 45
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 5 disponible(s)

Ajouter au panier

Image d'archives

Jose, Jeeva; Lal, P Sojan
Edité par Anchor Academic Publishing, 2016
ISBN 10 : 3960670877 ISBN 13 : 9783960670872
Neuf Couverture souple

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. pp. 212. N° de réf. du vendeur 26378469400

Contacter le vendeur

Acheter neuf

EUR 102,77
Autre devise
Frais de port : EUR 7,72
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Jose, Jeeva; Lal, P Sojan
Edité par Anchor Academic Publishing, 2016
ISBN 10 : 3960670877 ISBN 13 : 9783960670872
Neuf Couverture souple
impression à la demande

Vendeur : Majestic Books, Hounslow, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Print on Demand pp. 212. N° de réf. du vendeur 385434567

Contacter le vendeur

Acheter neuf

EUR 105,62
Autre devise
Frais de port : EUR 10,28
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Jose, Jeeva; Lal, P Sojan
Edité par Anchor Academic Publishing, 2016
ISBN 10 : 3960670877 ISBN 13 : 9783960670872
Neuf Couverture souple
impression à la demande

Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. PRINT ON DEMAND pp. 212. N° de réf. du vendeur 18378469394

Contacter le vendeur

Acheter neuf

EUR 108,63
Autre devise
Frais de port : EUR 7,95
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Jose, Jeeva
Edité par Anchor Academic Publishing, 2016
ISBN 10 : 3960670877 ISBN 13 : 9783960670872
Neuf PAP
impression à la demande

Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

PAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9783960670872

Contacter le vendeur

Acheter neuf

EUR 130,53
Autre devise
Frais de port : EUR 1,06
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Jose, Jeeva; Lal, P Sojan
Edité par Anchor Academic Publishing, 2016
ISBN 10 : 3960670877 ISBN 13 : 9783960670872
Neuf Couverture souple

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9783960670872_new

Contacter le vendeur

Acheter neuf

EUR 127,71
Autre devise
Frais de port : EUR 4,63
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Jose, Jeeva; Lal, P Sojan
Edité par Anchor Academic Publishing, 2016
ISBN 10 : 3960670877 ISBN 13 : 9783960670872
Neuf PAP
impression à la demande

Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

PAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9783960670872

Contacter le vendeur

Acheter neuf

EUR 128,80
Autre devise
Frais de port : EUR 4,95
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

There are 2 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre