Ihara Zeta Function: Zeta function, Graph (mathematics), Selberg zeta function, Adjacency matrix, Discrete group, Special linear group, Jean-Pierre Serre

9786132861474: Ihara Zeta Function: Zeta function, Graph (mathematics), Selberg zeta function, Adjacency matrix, Discrete group, Special linear group, Jean-Pierre Serre
Présentation de l'éditeur :

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. The Ihara zeta-function is a zeta function associated with a finite graph. It closely resembles the Selberg zeta-function, and is used to relate closed paths to the spectrum of the adjacency matrix. The Ihara zeta-function was first defined by Yasutaka Ihara in the 1960s in the context of discrete subgroups of the two-by-two p-adic special linear group. Jean-Pierre Serre suggested in his book Trees that Ihara''s original definition can be reinterpreted graph-theoretically. It was Toshikazu Sunada who put this suggestion into practice (1985). A regular graph is a Ramanujan graph if and only if its Ihara zeta function satisfies an analogue of the Riemann hypothesis.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

(Aucun exemplaire disponible)

Chercher:



Créez une demande

Si vous ne trouvez pas un livre sur AbeBooks, nous le rechercherons automatiquement pour vous parmi les livres quotidiennement ajoutés au catalogue.

Créez une demande