The automated handwritten digit recognition task using supervised learning (classification) has many practical applications such as online handwriting recognition on electronic devices, recognizing postal mail codes for mail sorting, processing bank cheque amounts, and numeric entries in various forms filled manually and so on. Though the task is relatively a simple machine learning task, that is, the input consists of black and white pixels well separated from background which are categorized into output categories but has varied challenges associated.Deep learning can be applied to study multilevel representations of data before proceeding with classification. In the work presented in this book we compare various approaches and their variations to generate an optima set of features which can be used for the classification problem of handwritten digits.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
The automated handwritten digit recognition task using supervised learning (classification) has many practical applications such as online handwriting recognition on electronic devices, recognizing postal mail codes for mail sorting, processing bank cheque amounts, and numeric entries in various forms filled manually and so on. Though the task is relatively a simple machine learning task, that is, the input consists of black and white pixels well separated from background which are categorized into output categories but has varied challenges associated.Deep learning can be applied to study multilevel representations of data before proceeding with classification. In the work presented in this book we compare various approaches and their variations to generate an optima set of features which can be used for the classification problem of handwritten digits.
Akshi Kumar is a Ph.D in Computer Engineering from the University of Delhi, Delhi, India and currently working as an Assistant Professor in Department of Computer Science & Engineering at the Delhi Technological University, Delhi, India.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The automated handwritten digit recognition task using supervised learning (classification) has many practical applications such as online handwriting recognition on electronic devices, recognizing postal mail codes for mail sorting, processing bank cheque amounts, and numeric entries in various forms filled manually and so on. Though the task is relatively a simple machine learning task, that is, the input consists of black and white pixels well separated from background which are categorized into output categories but has varied challenges associated.Deep learning can be applied to study multilevel representations of data before proceeding with classification. In the work presented in this book we compare various approaches and their variations to generate an optima set of features which can be used for the classification problem of handwritten digits. 80 pp. Englisch. N° de réf. du vendeur 9786202024846
Quantité disponible : 2 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 80 pages. 8.66x5.91x0.19 inches. In Stock. N° de réf. du vendeur zk6202024844
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Kumar AkshiAkshi Kumar is a Ph.D in Computer Engineering from the University of Delhi, Delhi, India and currently working as an Assistant Professor in Department of Computer Science & Engineering at the Delhi Technological University. N° de réf. du vendeur 167895803
Quantité disponible : Plus de 20 disponibles
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -The automated handwritten digit recognition task using supervised learning (classification) has many practical applications such as online handwriting recognition on electronic devices, recognizing postal mail codes for mail sorting, processing bank cheque amounts, and numeric entries in various forms filled manually and so on. Though the task is relatively a simple machine learning task, that is, the input consists of black and white pixels well separated from background which are categorized into output categories but has varied challenges associated.Deep learning can be applied to study multilevel representations of data before proceeding with classification. In the work presented in this book we compare various approaches and their variations to generate an optima set of features which can be used for the classification problem of handwritten digits.Books on Demand GmbH, Überseering 33, 22297 Hamburg 80 pp. Englisch. N° de réf. du vendeur 9786202024846
Quantité disponible : 2 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The automated handwritten digit recognition task using supervised learning (classification) has many practical applications such as online handwriting recognition on electronic devices, recognizing postal mail codes for mail sorting, processing bank cheque amounts, and numeric entries in various forms filled manually and so on. Though the task is relatively a simple machine learning task, that is, the input consists of black and white pixels well separated from background which are categorized into output categories but has varied challenges associated.Deep learning can be applied to study multilevel representations of data before proceeding with classification. In the work presented in this book we compare various approaches and their variations to generate an optima set of features which can be used for the classification problem of handwritten digits. N° de réf. du vendeur 9786202024846
Quantité disponible : 1 disponible(s)
Vendeur : preigu, Osnabrück, Allemagne
Taschenbuch. Etat : Neu. Handwritten Digit Recognition Using Deep Learning | Akshi Kumar | Taschenbuch | 80 S. | Englisch | 2017 | LAP LAMBERT Academic Publishing | EAN 9786202024846 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. N° de réf. du vendeur 109727733
Quantité disponible : 5 disponible(s)
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
paperback. Etat : New. NEW. SHIPS FROM MULTIPLE LOCATIONS. book. N° de réf. du vendeur ERICA82962020248446
Quantité disponible : 1 disponible(s)