Articles liés à Real-Time Demand Forecasting: Azure, ML, Demand Forecasting

Real-Time Demand Forecasting: Azure, ML, Demand Forecasting - Couverture souple

 
9786202674478: Real-Time Demand Forecasting: Azure, ML, Demand Forecasting
  • ÉditeurLAP LAMBERT Academic Publishing
  • Date d'édition2020
  • ISBN 10 6202674474
  • ISBN 13 9786202674478
  • ReliureBroché
  • Langueanglais
  • Nombre de pages104
  • Coordonnées du fabricantnon disponible

Acheter neuf

Afficher cet article
EUR 45,45

Autre devise

EUR 9,70 expédition depuis Allemagne vers France

Destinations, frais et délais

Résultats de recherche pour Real-Time Demand Forecasting: Azure, ML, Demand Forecasting

Image fournie par le vendeur

Punit Gupta|Harshit Ladia,Kabir Kakkar,Kriti Rai|Yogesh Agrawal, Rishika Mamgain
ISBN 10 : 6202674474 ISBN 13 : 9786202674478
Neuf Couverture souple
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Gupta PunitPunit Gupta is an Associate Professor in the Department of Computer and Communiction Engineering, Manipal University Jaipur, Jaipur, Rajisthan, India.Has got M.Tech. Degree in Computer Science and Engineering from Jaypee I. N° de réf. du vendeur 389068752

Contacter le vendeur

Acheter neuf

EUR 45,45
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Punit Gupta
ISBN 10 : 6202674474 ISBN 13 : 9786202674478
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The model which we have presented is a Linear Regression Model. In the results above we see that predictions can be done on the basis of the data available and is approximately accurate. An accurate forecast is very important for the demand planning team. The data used in this project and building the model is using the sales-in data for different stores. The important factor to be considered is the stability of the model and removing the game-playing. A community version of a platform is used to build the model. Linear Regression model is developed in pyspark. After the results are generated, dataframe of results is validated and generated and is sent backto the Azure SQL database to be used in Power BI.In the future work, different techniques will be considered and researched. Time-Series and Machine Learning to be built in one platform and check how the minimization of mse produces the forecast. The predictions can be hyper parameterized to give more accurately tuned results. Also, in the PowerBI report more measures and visualizations can be made on basis of individual's thought process. 104 pp. Englisch. N° de réf. du vendeur 9786202674478

Contacter le vendeur

Acheter neuf

EUR 54,90
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Punit Gupta
ISBN 10 : 6202674474 ISBN 13 : 9786202674478
Neuf Taschenbuch
impression à la demande

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The model which we have presented is a Linear Regression Model. In the results above we see that predictions can be done on the basis of the data available and is approximately accurate. An accurate forecast is very important for the demand planning team. The data used in this project and building the model is using the sales-in data for different stores. The important factor to be considered is the stability of the model and removing the game-playing. A community version of a platform is used to build the model. Linear Regression model is developed in pyspark. After the results are generated, dataframe of results is validated and generated and is sent backto the Azure SQL database to be used in Power BI.In the future work, different techniques will be considered and researched. Time-Series and Machine Learning to be built in one platform and check how the minimization of mse produces the forecast. The predictions can be hyper parameterized to give more accurately tuned results. Also, in the PowerBI report more measures and visualizations can be made on basis of individual's thought process. N° de réf. du vendeur 9786202674478

Contacter le vendeur

Acheter neuf

EUR 55,56
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Punit Gupta
ISBN 10 : 6202674474 ISBN 13 : 9786202674478
Neuf Taschenbuch

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Neuware -The model which we have presented is a Linear Regression Model. In the results above we see that predictions can be done on the basis of the data available and is approximately accurate. An accurate forecast is very important for the demand planning team. The data used in this project and building the model is using the sales-in data for different stores. The important factor to be considered is the stability of the model and removing the game-playing. A community version of a platform is used to build the model. Linear Regression model is developed in pyspark. After the results are generated, dataframe of results is validated and generated and is sent backto the Azure SQL database to be used in Power BI.In the future work, different techniques will be considered and researched. Time-Series and Machine Learning to be built in one platform and check how the minimization of mse produces the forecast. The predictions can be hyper parameterized to give more accurately tuned results. Also, in the PowerBI report more measures and visualizations can be made on basis of individual¿s thought process.Books on Demand GmbH, Überseering 33, 22297 Hamburg 104 pp. Englisch. N° de réf. du vendeur 9786202674478

Contacter le vendeur

Acheter neuf

EUR 54,90
Autre devise
Frais de port : EUR 15
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier