Articles liés à Analyse der Klassifizierung für unausgewogene Daten

Analyse der Klassifizierung für unausgewogene Daten - Couverture souple

 
9786206345428: Analyse der Klassifizierung für unausgewogene Daten

Synopsis

Überall auf der Welt werden enorme Datenmengen gesammelt und in Datenbanken gespeichert. Diese Daten werden gebündelt und nehmen jedes Jahr zu. Das Extrahieren von Informationen, die in solchen Datenbanken verborgen sind, und das Klassifizieren der extrahierten Informationen sind die wichtigsten Aufgaben beim Data Mining. Wenn solche Datensätze unausgewogen sind, wird es schwierig, sie zu verarbeiten. Denn die Vorhersage der Zukunft ist eine der grundlegenden Aufgaben im Data Mining. Die Arbeit mit unausgewogenen Datensätzen zur Vorhersage der möglichen Ergebnisse ist eine sehr mühsame Aufgabe. Ein Datensatz ist unausgewogen, wenn er nicht korrekt klassifiziert ist, wenn eine Klasse mehr Instanzen enthält als andere. Sie werden oft als positive Klasse (Minderheit) und negative Klasse (Mehrheit) dargestellt. Die Klasse mit der geringeren Anzahl von Stichproben wird als Minderheitsklasse bezeichnet, die mit der höheren Anzahl als Mehrheitsklasse. Ein unausgewogener Datensatz verursacht viele schwerwiegende Probleme beim Data Mining, da der Standard-Klassifizierungsalgorithmus den Datensatz meist als ausgewogen betrachtet, was wiederum zu einer partiellen Bevorzugung der Mehrheitsklasse führt. Bei Anwendungen wie der medizinischen Diagnose hat dies sehr schwerwiegende Auswirkungen. Daher ist ein ausgeglichener Datensatz für viele Echtzeitanwendungen entscheidend.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

  • ÉditeurVerlag Unser Wissen
  • Date d'édition2023
  • ISBN 10 6206345424
  • ISBN 13 9786206345428
  • ReliureBroché
  • Langueallemand
  • Nombre de pages72
  • Coordonnées du fabricantnon disponible

Acheter neuf

Afficher cet article
EUR 35,90

Autre devise

EUR 9,70 expédition depuis Allemagne vers France

Destinations, frais et délais

Résultats de recherche pour Analyse der Klassifizierung für unausgewogene Daten

Image fournie par le vendeur

Dharmendra Singh Rajput|S. Sinduja
Edité par Verlag Unser Wissen, 2023
ISBN 10 : 6206345424 ISBN 13 : 9786206345428
Neuf Couverture souple
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Rajput Dharmendra SinghDharmendra Singh Rajput - Ph.D. (Januar 2015) auf dem Gebiet des Document Clustering vom National Institute of Technology Bhopal, Indien. Hat mehr als 6 Jahre Erfahrung in Lehre, Forschung und Industrie. Derzei. N° de réf. du vendeur 1043584363

Contacter le vendeur

Acheter neuf

EUR 35,90
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Dharmendra Singh Rajput
Edité par Verlag Unser Wissen, 2023
ISBN 10 : 6206345424 ISBN 13 : 9786206345428
Neuf Taschenbuch
impression à la demande

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Überall auf der Welt werden enorme Datenmengen gesammelt und in Datenbanken gespeichert. Diese Daten werden gebündelt und nehmen jedes Jahr zu. Das Extrahieren von Informationen, die in solchen Datenbanken verborgen sind, und das Klassifizieren der extrahierten Informationen sind die wichtigsten Aufgaben beim Data Mining. Wenn solche Datensätze unausgewogen sind, wird es schwierig, sie zu verarbeiten. Denn die Vorhersage der Zukunft ist eine der grundlegenden Aufgaben im Data Mining. Die Arbeit mit unausgewogenen Datensätzen zur Vorhersage der möglichen Ergebnisse ist eine sehr mühsame Aufgabe. Ein Datensatz ist unausgewogen, wenn er nicht korrekt klassifiziert ist, wenn eine Klasse mehr Instanzen enthält als andere. Sie werden oft als positive Klasse (Minderheit) und negative Klasse (Mehrheit) dargestellt. Die Klasse mit der geringeren Anzahl von Stichproben wird als Minderheitsklasse bezeichnet, die mit der höheren Anzahl als Mehrheitsklasse. Ein unausgewogener Datensatz verursacht viele schwerwiegende Probleme beim Data Mining, da der Standard-Klassifizierungsalgorithmus den Datensatz meist als ausgewogen betrachtet, was wiederum zu einer partiellen Bevorzugung der Mehrheitsklasse führt. Bei Anwendungen wie der medizinischen Diagnose hat dies sehr schwerwiegende Auswirkungen. Daher ist ein ausgeglichener Datensatz für viele Echtzeitanwendungen entscheidend. N° de réf. du vendeur 9786206345428

Contacter le vendeur

Acheter neuf

EUR 35,90
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Dharmendra Singh Rajput
Edité par Verlag Unser Wissen Aug 2023, 2023
ISBN 10 : 6206345424 ISBN 13 : 9786206345428
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Überall auf der Welt werden enorme Datenmengen gesammelt und in Datenbanken gespeichert. Diese Daten werden gebündelt und nehmen jedes Jahr zu. Das Extrahieren von Informationen, die in solchen Datenbanken verborgen sind, und das Klassifizieren der extrahierten Informationen sind die wichtigsten Aufgaben beim Data Mining. Wenn solche Datensätze unausgewogen sind, wird es schwierig, sie zu verarbeiten. Denn die Vorhersage der Zukunft ist eine der grundlegenden Aufgaben im Data Mining. Die Arbeit mit unausgewogenen Datensätzen zur Vorhersage der möglichen Ergebnisse ist eine sehr mühsame Aufgabe. Ein Datensatz ist unausgewogen, wenn er nicht korrekt klassifiziert ist, wenn eine Klasse mehr Instanzen enthält als andere. Sie werden oft als positive Klasse (Minderheit) und negative Klasse (Mehrheit) dargestellt. Die Klasse mit der geringeren Anzahl von Stichproben wird als Minderheitsklasse bezeichnet, die mit der höheren Anzahl als Mehrheitsklasse. Ein unausgewogener Datensatz verursacht viele schwerwiegende Probleme beim Data Mining, da der Standard-Klassifizierungsalgorithmus den Datensatz meist als ausgewogen betrachtet, was wiederum zu einer partiellen Bevorzugung der Mehrheitsklasse führt. Bei Anwendungen wie der medizinischen Diagnose hat dies sehr schwerwiegende Auswirkungen. Daher ist ein ausgeglichener Datensatz für viele Echtzeitanwendungen entscheidend. 72 pp. Deutsch. N° de réf. du vendeur 9786206345428

Contacter le vendeur

Acheter neuf

EUR 35,90
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Dharmendra Singh Rajput
Edité par Verlag Unser Wissen Aug 2023, 2023
ISBN 10 : 6206345424 ISBN 13 : 9786206345428
Neuf Taschenbuch

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Neuware -Überall auf der Welt werden enorme Datenmengen gesammelt und in Datenbanken gespeichert. Diese Daten werden gebündelt und nehmen jedes Jahr zu. Das Extrahieren von Informationen, die in solchen Datenbanken verborgen sind, und das Klassifizieren der extrahierten Informationen sind die wichtigsten Aufgaben beim Data Mining. Wenn solche Datensätze unausgewogen sind, wird es schwierig, sie zu verarbeiten. Denn die Vorhersage der Zukunft ist eine der grundlegenden Aufgaben im Data Mining. Die Arbeit mit unausgewogenen Datensätzen zur Vorhersage der möglichen Ergebnisse ist eine sehr mühsame Aufgabe. Ein Datensatz ist unausgewogen, wenn er nicht korrekt klassifiziert ist, wenn eine Klasse mehr Instanzen enthält als andere. Sie werden oft als positive Klasse (Minderheit) und negative Klasse (Mehrheit) dargestellt. Die Klasse mit der geringeren Anzahl von Stichproben wird als Minderheitsklasse bezeichnet, die mit der höheren Anzahl als Mehrheitsklasse. Ein unausgewogener Datensatz verursacht viele schwerwiegende Probleme beim Data Mining, da der Standard-Klassifizierungsalgorithmus den Datensatz meist als ausgewogen betrachtet, was wiederum zu einer partiellen Bevorzugung der Mehrheitsklasse führt. Bei Anwendungen wie der medizinischen Diagnose hat dies sehr schwerwiegende Auswirkungen. Daher ist ein ausgeglichener Datensatz für viele Echtzeitanwendungen entscheidend.Books on Demand GmbH, Überseering 33, 22297 Hamburg 72 pp. Deutsch. N° de réf. du vendeur 9786206345428

Contacter le vendeur

Acheter neuf

EUR 35,90
Autre devise
Frais de port : EUR 15
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Dharmendra Singh Rajput
Edité par Verlag Unser Wissen, 2023
ISBN 10 : 6206345424 ISBN 13 : 9786206345428
Neuf Taschenbuch

Vendeur : preigu, Osnabrück, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Analyse der Klassifizierung für unausgewogene Daten | Dharmendra Singh Rajput (u. a.) | Taschenbuch | Paperback | 72 S. | Deutsch | 2023 | Verlag Unser Wissen | EAN 9786206345428 | Verantwortliche Person für die EU: Verlag Unser Wissen, Brivibas Gatve 197, 1039 RIGA, LITAUEN, customerservice[at]vdm-vsg[dot]de | Anbieter: preigu. N° de réf. du vendeur 127406352

Contacter le vendeur

Acheter neuf

EUR 35,90
Autre devise
Frais de port : EUR 45
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 5 disponible(s)

Ajouter au panier