Articles liés à Robust Hand Gesture Recognition for Robotic Hand Control

Robust Hand Gesture Recognition for Robotic Hand Control - Couverture rigide

 
9789811047978: Robust Hand Gesture Recognition for Robotic Hand Control

Synopsis

This book focuses on light invariant bare hand gesture recognition while there is no restriction on the types of gestures. Observations and results have confirmed that this research work can be used to remotely control a robotic hand using hand gestures. The system developed here is also able to recognize hand gestures in different lighting conditions. The pre-processing is performed by developing an image-cropping algorithm that ensures only the area of interest is included in the segmented image. The segmented image is compared with a predefined gesture set which must be installed in the recognition system. These images are stored and feature vectors are extracted from them. These feature vectors are subsequently presented using an orientation histogram, which provides a view of the edges in the form of frequency. Thereby, if the same gesture is shown twice in different lighting intensities, both repetitions will map to the same gesture in the stored data. The mapping ofthe segmented image's orientation histogram is firstly done using the Euclidian distance method. Secondly, the supervised neural network is trained for the same, producing better recognition results.

An approach to controlling electro-mechanical robotic hands using dynamic hand gestures is also presented using a robot simulator. Such robotic hands have applications in commercial, military or emergency operations where human life cannot be risked. For such applications, an artificial robotic hand is required to perform real-time operations. This robotic hand should be able to move its fingers in the same manner as a human hand. For this purpose, hand geometry parameters are obtained using a webcam and also using KINECT. The parameter detection is direction invariant in both methods. Once the hand parameters are obtained, the fingers' angle information is obtained by performing a geometrical analysis. An artificial neural network is also implemented to calculate the angles. These two methods can be used with only one hand, either right or left. A separate method that is applicable to both hands simultaneously is also developed and fingers angles are calculated. The contents of this book will be useful for researchers and professional engineers working on robotic arm/hand systems.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Dr. Ankit Chaudhary received his Master of Engineering degree in Computer Science from the Birla Institute of Technology and Science, Pilani and his Ph.D. from the Central Electronics Engineering Research Institute, Council of Scientific and Industrial Research (CSIR). His research interests include vision-based applications, intelligent systems, and Robotics.

Having authored sixty research publications and edited one book, Dr. Chaudhary is an Associate Editor for Computers and Electrical Engineering and serves on the Editorial Boards of several international journals. He is also a reviewer for numerous journals, including IEEE Transactions on Image Processing, IET Image Processing, Machine Vision and Applications, and Robotics and Autonomous Systems. In the past, Dr. Chaudhary was associated with the University of Iowa's Department of Electrical and Computer Engineering and the Department of Computer Science BITS Pilani, also working as a Visiting Faculty/researcher at many research laboratories.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

  • ÉditeurSpringer Verlag, Singapore
  • Date d'édition2017
  • ISBN 10 9811047979
  • ISBN 13 9789811047978
  • ReliureRelié
  • Langueanglais
  • Numéro d'édition1
  • Nombre de pages96
  • Coordonnées du fabricantnon disponible

Acheter neuf

Afficher cet article
EUR 92,27

Autre devise

EUR 9,70 expédition depuis Allemagne vers France

Destinations, frais et délais

Autres éditions populaires du même titre

9789811352348: Robust Hand Gesture Recognition for Robotic Hand Control

Edition présentée

ISBN 10 :  9811352348 ISBN 13 :  9789811352348
Editeur : Springer, 2019
Couverture souple

Résultats de recherche pour Robust Hand Gesture Recognition for Robotic Hand Control

Image fournie par le vendeur

Ankit Chaudhary
Edité par Springer Singapore, 2017
ISBN 10 : 9811047979 ISBN 13 : 9789811047978
Neuf Couverture rigide
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Gebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Covers the details of a vision approach in dynamic gesture recognitionPresents step-by-step descriptions of each milestone in Real time scenarioIncludes hand movement conversion to robot controlD. N° de réf. du vendeur 150810891

Contacter le vendeur

Acheter neuf

EUR 92,27
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Ankit Chaudhary
ISBN 10 : 9811047979 ISBN 13 : 9789811047978
Neuf Couverture rigide
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book focuses on light invariant bare hand gesture recognition while there is no restriction on the types of gestures. Observations and results have confirmed that this research work can be used to remotely control a robotic hand using hand gestures. The system developed here is also able to recognize hand gestures in different lighting conditions. The pre-processing is performed by developing animage-croppingalgorithm that ensures only the area of interest is included in the segmented image. The segmented image is compared with a predefined gesture set which must be installed in the recognition system. These images are stored and feature vectors are extracted from them. These feature vectors are subsequently presented using an orientation histogram, which provides a view of the edges in the form of frequency. Thereby, if the same gesture is shown twice in different lighting intensities, both repetitions will map to the same gesture in the stored data. The mapping of the segmented image's orientation histogram is firstly done using the Euclidian distance method. Secondly, the supervised neural network is trained for the same, producing better recognition results.An approach to controlling electro-mechanical robotic hands using dynamic hand gestures is also presented using a robot simulator. Such robotic hands have applications in commercial, military or emergency operations where human life cannot be risked. For such applications, an artificial robotic hand is required to perform real-time operations. This robotic hand should be able to move its fingers in the same manner as a human hand. For this purpose, hand geometry parameters are obtained using a webcam and also using KINECT. The parameter detection is direction invariant in both methods. Once the hand parameters are obtained, the fingers' angle information is obtained by performing a geometrical analysis. An artificial neural network is also implemented to calculate the angles. These two methods can be used with only one hand, either right or left. A separate method that is applicable to both hands simultaneously is also developed and fingers angles are calculated. The contents of this book will be useful for researchers and professional engineers working on robotic arm/hand systems. 120 pp. Englisch. N° de réf. du vendeur 9789811047978

Contacter le vendeur

Acheter neuf

EUR 106,99
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Ankit Chaudhary
ISBN 10 : 9811047979 ISBN 13 : 9789811047978
Neuf Couverture rigide

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Neuware -This book focuses on light invariant bare hand gesture recognition while there is no restriction on the types of gestures. Observations and results have confirmed that this research work can be used to remotely control a robotic hand using hand gestures. The system developed here is also able to recognize hand gestures in different lighting conditions. The pre-processing is performed by developing an image-cropping algorithm that ensures only the area of interest is included in the segmented image. The segmented image is compared with a predefined gesture set which must be installed in the recognition system. These images are stored and feature vectors are extracted from them. These feature vectors are subsequently presented using an orientation histogram, which provides a view of the edges in the form of frequency. Thereby, if the same gesture is shown twice in different lighting intensities, both repetitions will map to the same gesture in the stored data. The mapping ofthe segmented image's orientation histogram is firstly done using the Euclidian distance method. Secondly, the supervised neural network is trained for the same, producing better recognition results.An approach to controlling electro-mechanical robotic hands using dynamic hand gestures is also presented using a robot simulator. Such robotic hands have applications in commercial, military or emergency operations where human life cannot be risked. For such applications, an artificial robotic hand is required to perform real-time operations. This robotic hand should be able to move its fingers in the same manner as a human hand. For this purpose, hand geometry parameters are obtained using a webcam and also using KINECT. The parameter detection is direction invariant in both methods. Once the hand parameters are obtained, the fingers¿ angle information is obtained by performing a geometrical analysis. An artificial neural network is also implemented to calculate the angles. These two methods can be used with only one hand, either right or left. A separate method that is applicable to both hands simultaneously is also developed and fingers angles are calculated. The contents of this book will be useful for researchers and professional engineers working on robotic arm/hand systems.Springer-Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 120 pp. Englisch. N° de réf. du vendeur 9789811047978

Contacter le vendeur

Acheter neuf

EUR 106,99
Autre devise
Frais de port : EUR 15
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Ankit Chaudhary
ISBN 10 : 9811047979 ISBN 13 : 9789811047978
Neuf Couverture rigide

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book focuses on light invariant bare hand gesture recognition while there is no restriction on the types of gestures. Observations and results have confirmed that this research work can be used to remotely control a robotic hand using hand gestures. The system developed here is also able to recognize hand gestures in different lighting conditions. The pre-processing is performed by developing animage-croppingalgorithm that ensures only the area of interest is included in the segmented image. The segmented image is compared with a predefined gesture set which must be installed in the recognition system. These images are stored and feature vectors are extracted from them. These feature vectors are subsequently presented using an orientation histogram, which provides a view of the edges in the form of frequency. Thereby, if the same gesture is shown twice in different lighting intensities, both repetitions will map to the same gesture in the stored data. The mapping ofthe segmented image's orientation histogram is firstly done using the Euclidian distance method. Secondly, the supervised neural network is trained for the same, producing better recognition results.An approach to controlling electro-mechanical robotic hands using dynamic hand gestures is also presented using a robot simulator. Such robotic hands have applications in commercial, military or emergency operations where human life cannot be risked. For such applications, an artificial robotic hand is required to perform real-time operations. This robotic hand should be able to move its fingers in the same manner as a human hand. For this purpose, hand geometry parameters are obtained using a webcam and also using KINECT. The parameter detection is direction invariant in both methods. Once the hand parameters are obtained, the fingers' angle information is obtained by performing a geometrical analysis. An artificial neural network is also implemented to calculate the angles. These two methods can be used with only one hand, either right or left. A separate method that is applicable to both hands simultaneously is also developed and fingers angles are calculated. The contents of this book will be useful for researchers and professional engineers working on robotic arm/hand systems. N° de réf. du vendeur 9789811047978

Contacter le vendeur

Acheter neuf

EUR 112,77
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Chaudhary, Ankit (Author)
Edité par Springer, 2017
ISBN 10 : 9811047979 ISBN 13 : 9789811047978
Neuf Couverture rigide

Vendeur : Revaluation Books, Exeter, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : Brand New. 96 pages. 9.50x6.25x0.50 inches. In Stock. N° de réf. du vendeur x-9811047979

Contacter le vendeur

Acheter neuf

EUR 152,96
Autre devise
Frais de port : EUR 11,68
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Ankit Chaudhary
ISBN 10 : 9811047979 ISBN 13 : 9789811047978
Neuf Couverture rigide Edition originale

Vendeur : Grand Eagle Retail, Fairfield, OH, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : new. Hardcover. This book focuses on light invariant bare hand gesture recognition while there is no restriction on the types of gestures. Observations and results have confirmed that this research work can be used to remotely control a robotic hand using hand gestures. The system developed here is also able to recognize hand gestures in different lighting conditions. The pre-processing is performed by developing an image-cropping algorithm that ensures only the area of interest is included in the segmented image. The segmented image is compared with a predefined gesture set which must be installed in the recognition system. These images are stored and feature vectors are extracted from them. These feature vectors are subsequently presented using an orientation histogram, which provides a view of the edges in the form of frequency. Thereby, if the same gesture is shown twice in different lighting intensities, both repetitions will map to the same gesture in the stored data. The mapping ofthe segmented image's orientation histogram is firstly done using the Euclidian distance method. Secondly, the supervised neural network is trained for the same, producing better recognition results. An approach to controlling electro-mechanical robotic hands using dynamic hand gestures is also presented using a robot simulator. Such robotic hands have applications in commercial, military or emergency operations where human life cannot be risked. For such applications, an artificial robotic hand is required to perform real-time operations. This robotic hand should be able to move its fingers in the same manner as a human hand. For this purpose, hand geometry parameters are obtained using a webcam and also using KINECT. The parameter detection is direction invariant in both methods. Once the hand parameters are obtained, the fingers angle information is obtained by performing a geometrical analysis. An artificial neural network is also implemented to calculate the angles. These two methods can be used with only one hand, either right or left. A separate method that is applicable to both hands simultaneously is also developed and fingers angles are calculated. The contents of this book will be useful for researchers and professional engineers working on robotic arm/hand systems. This book focuses on light invariant bare hand gesture recognition while there is no restriction on the types of gestures. An approach to controlling electro-mechanical robotic hands using dynamic hand gestures is also presented using a robot simulator. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9789811047978

Contacter le vendeur

Acheter neuf

EUR 125,60
Autre devise
Frais de port : EUR 65,07
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier