Articles liés à High-dimensional Microarray Data Analysis: Cancer Gene...

High-dimensional Microarray Data Analysis: Cancer Gene Diagnosis and Malignancy Indexes by Microarray - Couverture rigide

 
9789811359972: High-dimensional Microarray Data Analysis: Cancer Gene Diagnosis and Malignancy Indexes by Microarray

Synopsis

This book shows how to decompose high-dimensional microarrays into small subspaces (Small Matryoshkas, SMs), statistically analyze them, and perform cancer gene diagnosis. The information is useful for genetic experts, anyone who analyzes genetic data, and students to use as practical textbooks.

Discriminant analysis is the best approach for microarray consisting of normal and cancer classes. Microarrays are linearly separable data (LSD, Fact 3). However, because most linear discriminant function (LDF) cannot discriminate LSD theoretically and error rates are high, no one had discovered Fact 3 until now. Hard-margin SVM (H-SVM) and Revised IP-OLDF (RIP) can find Fact3 easily. LSD has the Matryoshka structure and is easily decomposed into many SMs (Fact 4). Because all SMs are small samples and LSD, statistical methods analyze SMs easily. However, useful results cannot be obtained. On the other hand, H-SVM and RIP can discriminate two classes in SM entirely. RatioSV is the ratioof SV distance and discriminant range. The maximum RatioSVs of six microarrays is over 11.67%. This fact shows that SV separates two classes by window width (11.67%). Such easy discrimination has been unresolved since 1970. The reason is revealed by facts presented here, so this book can be read and enjoyed like a mystery novel.

Many studies point out that it is difficult to separate signal and noise in a high-dimensional gene space. However, the definition of the signal is not clear. Convincing evidence is presented that LSD is a signal. Statistical analysis of the genes contained in the SM cannot provide useful information, but it shows that the discriminant score (DS) discriminated by RIP or H-SVM is easily LSD. For example, the Alon microarray has 2,000 genes which can be divided into 66 SMs. If 66 DSs are used as variables, the result is a 66-dimensional data. These signal data can be analyzed to find malignancy indicators by principal component analysis and cluster analysis.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Shuichi Shinmura, Seikei University

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

xxv, 419 p. Hardcover. Versand...
Afficher cet article

EUR 10 expédition depuis Allemagne vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 104,70

Autre devise

EUR 7,69 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Autres éditions populaires du même titre

9789811359996: High-dimensional Microarray Data Analysis: Cancer Gene Diagnosis and Malignancy Indexes by Microarray

Edition présentée

ISBN 10 :  9811359997 ISBN 13 :  9789811359996
Editeur : Springer, 2019
Couverture souple

Résultats de recherche pour High-dimensional Microarray Data Analysis: Cancer Gene...

Image d'archives

Shinmura, S.
Edité par Singapore, Springer., 2019
ISBN 10 : 9811359970 ISBN 13 : 9789811359972
Ancien ou d'occasion Couverture rigide

Vendeur : Universitätsbuchhandlung Herta Hold GmbH, Berlin, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

xxv, 419 p. Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Sprache: Englisch. N° de réf. du vendeur 6909IB

Contacter le vendeur

Acheter D'occasion

EUR 12
Autre devise
Frais de port : EUR 10
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Shinmura, Shuichi
Edité par Springer, 2019
ISBN 10 : 9811359970 ISBN 13 : 9789811359972
Neuf Couverture rigide

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 26376431112

Contacter le vendeur

Acheter neuf

EUR 104,70
Autre devise
Frais de port : EUR 7,69
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Shinmura, Shuichi
Edité par Springer, 2019
ISBN 10 : 9811359970 ISBN 13 : 9789811359972
Neuf Couverture rigide

Vendeur : Majestic Books, Hounslow, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 370695639

Contacter le vendeur

Acheter neuf

EUR 108,62
Autre devise
Frais de port : EUR 10,25
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Shinmura, Shuichi
Edité par Springer, 2019
ISBN 10 : 9811359970 ISBN 13 : 9789811359972
Neuf Couverture rigide

Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 18376431106

Contacter le vendeur

Acheter neuf

EUR 111,32
Autre devise
Frais de port : EUR 7,95
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Shuichi Shinmura
Edité par Springer Singapore, 2019
ISBN 10 : 9811359970 ISBN 13 : 9789811359972
Neuf Couverture rigide
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Shows how a new theory of discriminant analysis was used to solve unresolved cancer gene analysis for the first timeExplains how high-dimensional data such as microarrays can be decomposed for genetic cancer diagnosis&nbsp. N° de réf. du vendeur 259166371

Contacter le vendeur

Acheter neuf

EUR 118,61
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Shinmura, Shuichi
Edité par Springer, 2019
ISBN 10 : 9811359970 ISBN 13 : 9789811359972
Neuf Couverture rigide

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9789811359972_new

Contacter le vendeur

Acheter neuf

EUR 141,26
Autre devise
Frais de port : EUR 4,62
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Shuichi Shinmura
ISBN 10 : 9811359970 ISBN 13 : 9789811359972
Neuf Couverture rigide
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book shows how to decompose high-dimensional microarrays into small subspaces (Small Matryoshkas, SMs), statistically analyze them, and perform cancer gene diagnosis. The information is useful for genetic experts, anyone who analyzes genetic data, and students to use as practical textbooks.Discriminant analysis is the best approach for microarray consisting of normal and cancer classes. Microarrays are linearly separable data (LSD, Fact 3). However, because most linear discriminant function (LDF) cannot discriminate LSD theoretically and error rates are high, no one had discovered Fact 3 until now. Hard-margin SVM (H-SVM) and Revised IP-OLDF (RIP) can find Fact3 easily. LSD has the Matryoshka structure and is easily decomposed into many SMs (Fact 4). Because all SMs are small samples and LSD, statistical methods analyze SMs easily. However, useful results cannot be obtained. On the other hand, H-SVM and RIP can discriminate two classes in SM entirely. RatioSV is the ratio of SV distance and discriminant range. The maximum RatioSVs of six microarrays is over 11.67%. This fact shows that SV separates two classes by window width (11.67%). Such easy discrimination has been unresolved since 1970. The reason is revealed by facts presented here, so this book can be read and enjoyed like a mystery novel.Many studies point out that it is difficult to separate signal and noise in a high-dimensional gene space. However, the definition of the signal is not clear. Convincing evidence is presented that LSD is a signal. Statistical analysis of the genes contained in the SM cannot provide useful information, but it shows that the discriminant score (DS) discriminated by RIP or H-SVM is easily LSD. For example, the Alon microarray has 2,000 genes which can be divided into 66 SMs. If 66 DSs are used as variables, the result is a 66-dimensional data. These signal data can be analyzed to find malignancy indicators by principal component analysis and cluster analysis. 448 pp. Englisch. N° de réf. du vendeur 9789811359972

Contacter le vendeur

Acheter neuf

EUR 139,09
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Shuichi Shinmura
ISBN 10 : 9811359970 ISBN 13 : 9789811359972
Neuf Couverture rigide

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Neuware -This book shows how to decompose high-dimensional microarrays into small subspaces (Small Matryoshkas, SMs), statistically analyze them, and perform cancer gene diagnosis. The information is useful for genetic experts, anyone who analyzes genetic data, and students to use as practical textbooks.Discriminant analysis is the best approach for microarray consisting of normal and cancer classes. Microarrays are linearly separable data (LSD, Fact 3). However, because most linear discriminant function (LDF) cannot discriminate LSD theoretically and error rates are high, no one had discovered Fact 3 until now. Hard-margin SVM (H-SVM) and Revised IP-OLDF (RIP) can find Fact3 easily. LSD has the Matryoshka structure and is easily decomposed into many SMs (Fact 4). Because all SMs are small samples and LSD, statistical methods analyze SMs easily. However, useful results cannot be obtained. On the other hand, H-SVM and RIP can discriminate two classes in SM entirely. RatioSV is the ratioof SV distance and discriminant range. The maximum RatioSVs of six microarrays is over 11.67%. This fact shows that SV separates two classes by window width (11.67%). Such easy discrimination has been unresolved since 1970. The reason is revealed by facts presented here, so this book can be read and enjoyed like a mystery novel.Many studies point out that it is difficult to separate signal and noise in a high-dimensional gene space. However, the definition of the signal is not clear. Convincing evidence is presented that LSD is a signal. Statistical analysis of the genes contained in the SM cannot provide useful information, but it shows that the discriminant score (DS) discriminated by RIP or H-SVM is easily LSD. For example, the Alon microarray has 2,000 genes which can be divided into 66 SMs. If 66 DSs are used as variables, the result is a 66-dimensional data. These signal data can be analyzed to find malignancy indicators by principal component analysis and cluster analysis.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 448 pp. Englisch. N° de réf. du vendeur 9789811359972

Contacter le vendeur

Acheter neuf

EUR 139,09
Autre devise
Frais de port : EUR 15
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Shuichi Shinmura
ISBN 10 : 9811359970 ISBN 13 : 9789811359972
Neuf Couverture rigide

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book shows how to decompose high-dimensional microarrays into small subspaces (Small Matryoshkas, SMs), statistically analyze them, and perform cancer gene diagnosis. The information is useful for genetic experts, anyone who analyzes genetic data, and students to use as practical textbooks.Discriminant analysis is the best approach for microarray consisting of normal and cancer classes. Microarrays are linearly separable data (LSD, Fact 3). However, because most linear discriminant function (LDF) cannot discriminate LSD theoretically and error rates are high, no one had discovered Fact 3 until now. Hard-margin SVM (H-SVM) and Revised IP-OLDF (RIP) can find Fact3 easily. LSD has the Matryoshka structure and is easily decomposed into many SMs (Fact 4). Because all SMs are small samples and LSD, statistical methods analyze SMs easily. However, useful results cannot be obtained. On the other hand, H-SVM and RIP can discriminate two classes in SM entirely. RatioSV is the ratioof SV distance and discriminant range. The maximum RatioSVs of six microarrays is over 11.67%. This fact shows that SV separates two classes by window width (11.67%). Such easy discrimination has been unresolved since 1970. The reason is revealed by facts presented here, so this book can be read and enjoyed like a mystery novel.Many studies point out that it is difficult to separate signal and noise in a high-dimensional gene space. However, the definition of the signal is not clear. Convincing evidence is presented that LSD is a signal. Statistical analysis of the genes contained in the SM cannot provide useful information, but it shows that the discriminant score (DS) discriminated by RIP or H-SVM is easily LSD. For example, the Alon microarray has 2,000 genes which can be divided into 66 SMs. If 66 DSs are used as variables, the result is a 66-dimensional data. These signal data can be analyzed to find malignancy indicators by principal component analysis and cluster analysis. N° de réf. du vendeur 9789811359972

Contacter le vendeur

Acheter neuf

EUR 143,31
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Shinmura, Shuichi
Edité par Springer, 2019
ISBN 10 : 9811359970 ISBN 13 : 9789811359972
Neuf Couverture rigide

Vendeur : California Books, Miami, FL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur I-9789811359972

Contacter le vendeur

Acheter neuf

EUR 160,16
Autre devise
Frais de port : EUR 6,83
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

There are 2 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre