Articles liés à Knowledge Discovery from Multi-sourced Data

Knowledge Discovery from Multi-sourced Data - Couverture souple

 
9789811918780: Knowledge Discovery from Multi-sourced Data

Synopsis

This book addresses several knowledge discovery problems on multi-sourced data where the theories, techniques, and methods in data cleaning, data mining, and natural language processing are synthetically used. This book mainly focuses on three data models: the multi-sourced isomorphic data, the multi-sourced heterogeneous data, and the text data. On the basis of three data models, this book studies the knowledge discovery problems including truth discovery and fact discovery on multi-sourced data from four important properties: relevance, inconsistency, sparseness, and heterogeneity, which is useful for specialists as well as graduate students. Data, even describing the same object or event, can come from a variety of sources such as crowd workers and social media users. However, noisy pieces of data or information are unavoidable. Facing the daunting scale of data, it is unrealistic to expect humans to "label" or tell which data source is more reliable.Hence, it is crucial to identify trustworthy information from multiple noisy information sources, referring to the task of knowledge discovery. At present, the knowledge discovery research for multi-sourced data mainly faces two challenges. On the structural level, it is essential to consider the different characteristics of data composition and application scenarios and define the knowledge discovery problem on different occasions. On the algorithm level, the knowledge discovery task needs to consider different levels of information conflicts and design efficient algorithms to mine more valuable information using multiple clues. Existing knowledge discovery methods have defects on both the structural level and the algorithm level, making the knowledge discovery problem far from totally solved.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Chen Ye is currently an Associate Researcher at the School of Computer Science and Technology, Hangzhou Dianzi University, China. She received the Ph.D. degree in Computer Software and Theory from Harbin Institute of Technology, China. Her current research interests include data repairing, truth discovery, and crowdsourcing. She has won the ACM SIGMOD China Doctoral Dissertation Award in 2020.

Hongzhi Wang is a Professor and Doctoral Supervisor at the School of Computer Science and Technology, Harbin Institute of Technology, China. His research interests include big data management and analysis, data quality, graph data management, and web data management. He has published more than 150 papers, and he is the Primary Investigator of more than 10 projects including three NSFC projects, and co-PI of 973, 863, and NSFC key projects. He was awarded as Microsoft fellowship, China Excellent Database Engineer, and IBM Ph.D. fellowship.

Guojun Dai is now working in the School of Computer Science and Technology of Hangzhou Dianzi University, as the Head of the National Brain-Computer Collaborative Intelligent Technology International Joint Research Center, the director of the Institute of Computer Application Technology. His research interests include Internet of Things, industrial big data, network collaborative manufacturing, edge computing, brain-computer interface, cognitive computing, artificial intelligence. He has published over 50 research papers in top-quality international conferences and journals, particularly, INFOCOM, IEEE Transactions on Industrial Informatics, and IEEE Transactions on Mobile Computing.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

Zustand: Hervorragend | Seiten:...
Afficher cet article
EUR 39,79

Autre devise

EUR 9,90 expédition depuis Allemagne vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 48,37

Autre devise

EUR 9,70 expédition depuis Allemagne vers France

Destinations, frais et délais

Résultats de recherche pour Knowledge Discovery from Multi-sourced Data

Image d'archives

Chen Ye, Guojun Dai, Hongzhi Wang
Edité par Springer Nature Singapore, 2022
ISBN 10 : 9811918783 ISBN 13 : 9789811918780
Ancien ou d'occasion Couverture souple

Vendeur : Buchpark, Trebbin, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : Hervorragend. Zustand: Hervorragend | Seiten: 96 | Sprache: Englisch | Produktart: Bücher. N° de réf. du vendeur 38952132/1

Contacter le vendeur

Acheter D'occasion

EUR 39,79
Autre devise
Frais de port : EUR 9,90
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Ye, Chen|Wang, Hongzhi|Dai, Guojun
ISBN 10 : 9811918783 ISBN 13 : 9789811918780
Neuf Couverture souple
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book addresses several knowledge discovery problems on multi-sourced data where the theories, techniques, and methods in data cleaning, data mining, and natural language processing are synthetically used. This book mainly focuses on three data models: . N° de réf. du vendeur 571810609

Contacter le vendeur

Acheter neuf

EUR 48,37
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Chen Ye
Edité par Springer Verlag, Singapore, 2022
ISBN 10 : 9811918783 ISBN 13 : 9789811918780
Neuf PAP

Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

PAP. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur S0-9789811918780

Contacter le vendeur

Acheter neuf

EUR 56,71
Autre devise
Frais de port : EUR 4,93
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 5 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Chen Ye
ISBN 10 : 9811918783 ISBN 13 : 9789811918780
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book addresses several knowledge discovery problems on multi-sourced data where the theories, techniques, and methods in data cleaning, data mining, and natural language processing are synthetically used. This book mainly focuses on three data models: the multi-sourced isomorphic data, the multi-sourced heterogeneous data, and the text data. On the basis of three data models, this book studies the knowledge discovery problems including truth discovery and fact discovery on multi-sourced data from four important properties: relevance, inconsistency, sparseness, and heterogeneity, which is useful for specialists as well as graduate students.Data, even describing the same object or event, can come from a variety of sources such as crowd workers and social media users. However, noisy pieces of data or information are unavoidable. Facing the daunting scale of data, it is unrealistic to expect humans to 'label' or tell which data source is more reliable. Hence, it is crucial to identify trustworthy information from multiple noisy information sources, referring to the task of knowledge discovery.At present, the knowledge discovery research for multi-sourced data mainly faces two challenges. On the structural level, it is essential to consider the different characteristics of data composition and application scenarios and define the knowledge discovery problem on different occasions. On the algorithm level, the knowledge discovery task needs to consider different levels of information conflicts and design efficient algorithms to mine more valuable information using multiple clues. Existing knowledge discovery methods have defects on both the structural level and the algorithm level, making the knowledge discovery problem far from totally solved. 96 pp. Englisch. N° de réf. du vendeur 9789811918780

Contacter le vendeur

Acheter neuf

EUR 53,49
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Ye, Chen; Wang, Hongzhi; Dai, Guojun
Edité par Springer, 2022
ISBN 10 : 9811918783 ISBN 13 : 9789811918780
Neuf Couverture souple

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9789811918780_new

Contacter le vendeur

Acheter neuf

EUR 60,61
Autre devise
Frais de port : EUR 4,62
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Ye, Chen (Author)/ Wang, Hongzhi (Author)/ Dai, Guojun (Author)
Edité par Springer, 2022
ISBN 10 : 9811918783 ISBN 13 : 9789811918780
Neuf Paperback
impression à la demande

Vendeur : Revaluation Books, Exeter, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : Brand New. 95 pages. 9.25x6.10x0.28 inches. In Stock. This item is printed on demand. N° de réf. du vendeur __9811918783

Contacter le vendeur

Acheter neuf

EUR 53,67
Autre devise
Frais de port : EUR 11,58
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Ye, Chen
Edité par Springer 2022-06, 2022
ISBN 10 : 9811918783 ISBN 13 : 9789811918780
Neuf PF

Vendeur : Chiron Media, Wallingford, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

PF. Etat : New. N° de réf. du vendeur 6666-IUK-9789811918780

Contacter le vendeur

Acheter neuf

EUR 56,39
Autre devise
Frais de port : EUR 10,99
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 10 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Chen Ye
ISBN 10 : 9811918783 ISBN 13 : 9789811918780
Neuf Taschenbuch

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book addresses several knowledge discovery problems on multi-sourced data where the theories, techniques, and methods in data cleaning, data mining, and natural language processing are synthetically used. This book mainly focuses on three data models: the multi-sourced isomorphic data, the multi-sourced heterogeneous data, and the text data. On the basis of three data models, this book studies the knowledge discovery problems including truth discovery and fact discovery on multi-sourced data from four important properties: relevance, inconsistency, sparseness, and heterogeneity, which is useful for specialists as well as graduate students.Data, even describing the same object or event, can come from a variety of sources such as crowd workers and social media users. However, noisy pieces of data or information are unavoidable. Facing the daunting scale of data, it is unrealistic to expect humans to 'label' or tell which data source is more reliable.Hence, it is crucial to identify trustworthy information from multiple noisy information sources, referring to the task of knowledge discovery.At present, the knowledge discovery research for multi-sourced data mainly faces two challenges. On the structural level, it is essential to consider the different characteristics of data composition and application scenarios and define the knowledge discovery problem on different occasions. On the algorithm level, the knowledge discovery task needs to consider different levels of information conflicts and design efficient algorithms to mine more valuable information using multiple clues. Existing knowledge discovery methods have defects on both the structural level and the algorithm level, making the knowledge discovery problem far from totally solved. N° de réf. du vendeur 9789811918780

Contacter le vendeur

Acheter neuf

EUR 56,98
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Chen Ye
ISBN 10 : 9811918783 ISBN 13 : 9789811918780
Neuf Taschenbuch

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Neuware -This book addresses several knowledge discovery problems on multi-sourced data where the theories, techniques, and methods in data cleaning, data mining, and natural language processing are synthetically used. This book mainly focuses on three data models: the multi-sourced isomorphic data, the multi-sourced heterogeneous data, and the text data. On the basis of three data models, this book studies the knowledge discovery problems including truth discovery and fact discovery on multi-sourced data from four important properties: relevance, inconsistency, sparseness, and heterogeneity, which is useful for specialists as well as graduate students.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 96 pp. Englisch. N° de réf. du vendeur 9789811918780

Contacter le vendeur

Acheter neuf

EUR 53,49
Autre devise
Frais de port : EUR 15
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Ye, Chen; Wang, Hongzhi; Dai, Guojun
Edité par Springer, 2022
ISBN 10 : 9811918783 ISBN 13 : 9789811918780
Neuf Couverture souple

Vendeur : California Books, Miami, FL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur I-9789811918780

Contacter le vendeur

Acheter neuf

EUR 65,12
Autre devise
Frais de port : EUR 6,84
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

There are 1 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre