1 Machine Learning for Software-Defined Networking
1.1 Introduction of Software-Defined Networking
1.1.1 Software-Defined Wide Area Network
1.1.2 Software-Defined Data Center Networks
1.2 Introduction of Machine Learning Techniques
1.2.1 Deep Reinforcement Learning1.2.2 Multi-Agent Reinforcement Learning
1.2.3 Graph Neural Network
2 Deep Reinforcement Learning-based Traffic Engineering in SD-WANs
2.1 Introduction of Traffic Engineering
2.2 Motivation2.2.1 Problems of Existing Solutions
2.2.2 Opportunity
2.3 Overview of ScaleDRL
2.4 Design Details of ScaleDRL
2.4.1 Pinning Control in the Offline Phase
2.4.1.1 Pinning Control
2.4.1.2 Link Selection Algorithm
2.4.2 DRL Implementation of the Online Phase
2.4.2.1 DRL Framework2.4.2.2 Customization of Neural Networks and Interfaces
2.5 Performance Evaluation
2.5.1 Simulation Setup
2.5.2 Comparison Scheme
2.5.3 Simulation Results
2.6 Conclusion
3 Multi-Agent Reinforcement Learning-based Controller Load Balancing in SD-WANs
3.1 Introduction of Controller Load Balancing
3.2 Motivation
3.2.1 Problems of Existing Solutions
3.2.2 Opportunity
3.3 Controller Load Balancing Problem Formulation
2.3.1 Control Plane Resource Utilization Modeling
2.3.2 Control Plane Load Balancing Problem Formulation
2.3.3 Problem Complexity Analysis
3.4 Overview of MARVEL3.5 Design Details of MARVEL
3.5.1 Training Phase
3.5.2 Working Phase
3.5.3 MARVEL Model Implementation
3.6 Performance Evaluation
3.6.1 Simulation Setup
3.6.2 Comparison Scheme3.6.3 Simulation Results
3.7 Conclusion
4 Deep Reinforcement Learning-based Flow Scheduling for Power Efficiency in Data Center Networks
4.1 Introduction of Data Center Networks
4.1.1 Traffic Classification4.1.2 Traffic Dynamic Analysis
4.2 Motivation
4.2.1 Problems of Existing Solutions
4.2.2 Opportunity
4.3 Problem formulation
4.3.1 Design Consi
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Dr. Zehua Guo received B.S. degree from Northwestern Polytechnical University, Xi'an, China, M.S. degree from Xidian University, Xi'an, China, and Ph.D. degree from Northwestern Polytechnical University, Xi'an, China. He is an Associate Professor at Beijing Institute of Technology, Beijing, China. He was a Research Fellow at the Department of Electrical and Computer Engineering, New York University Tandon School of Engineering, New York, NY, USA, and a Postdoctoral Research Associate at the Department of Computer Science and Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA. His research interests include programmable networks (e.g., software-defined networking, network function virtualization), machine learning, and network security. He is an Associate Editor of the IEEE Systems Journal, and EURASIP Journal on Wireless Communications and Networking (Springer), an Editor of the KSII Transactions on Internet and Information Systems, and a Guest Editorof the Journal of Parallel and Distributed Computing. He was the Session Chair for the IJCAI 2021, IEEE ICC 2018, and currently serves as the Technical Program Committee Member of Computer Communications, AAAI, IWQoS, ICC, ICCCN, and ICA3PP. He has published 58 papers in prestigious IEEE/ACM/Elsevier journals and conferences, including TON, JSAC, IJCAI, TNSM, Computer Networks, ICDCS, IWQoS, and applied/owned 14 patents. He is a Senior Member of IEEE, China Institute of Communications, and Chinese Institute of Electronics, and a Member of China Computer Federation, ACM, ACM SIGCOMM, and ACM SIGCOMM China.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 9,90 expédition depuis Allemagne vers France
Destinations, frais et délaisEUR 4,62 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : Buchpark, Trebbin, Allemagne
Etat : Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher. N° de réf. du vendeur 40553965/1
Quantité disponible : 6 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9789811948732_new
Quantité disponible : Plus de 20 disponibles
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Emerging machine learning techniques bring new opportunities to flexible network control and management. This book focuses on using state-of-the-art machine learning-based approaches to improve the performance of Software-Defined Networking (SDN). It will a. N° de réf. du vendeur 611592891
Quantité disponible : Plus de 20 disponibles
Vendeur : Chiron Media, Wallingford, Royaume-Uni
PF. Etat : New. N° de réf. du vendeur 6666-IUK-9789811948732
Quantité disponible : 10 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Emerging machine learning techniques bring new opportunities to flexible network control and management. This book focuses on using state-of-the-art machine learning-based approaches to improve the performance of Software-Defined Networking (SDN). It will apply several innovative machine learning methods (e.g., Deep Reinforcement Learning, Multi-Agent Reinforcement Learning, and Graph Neural Network) to traffic engineering and controller load balancing in software-defined wide area networks, as well as flow scheduling, coflow scheduling, and flow migration for network function virtualization in software-defined data center networks. It helps readers reflect on several practical problems of deploying SDN and learn how to solve the problems by taking advantage of existing machine learning techniques. The book elaborates on the formulation of each problem, explains design details for each scheme, and provides solutions by running mathematical optimization processes, conducting simulated experiments, and analyzing the experimental results. 84 pp. Englisch. N° de réf. du vendeur 9789811948732
Quantité disponible : 2 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Emerging machine learning techniques bring new opportunities to flexible network control and management. This book focuses on using state-of-the-art machine learning-based approaches to improve the performance of Software-Defined Networking (SDN). It will apply several innovative machine learning methods (e.g., Deep Reinforcement Learning, Multi-Agent Reinforcement Learning, and Graph Neural Network) to traffic engineering and controller load balancing in software-defined wide area networks, as well as flow scheduling, coflow scheduling, and flow migration for network function virtualization in software-defined data center networks. It helps readers reflect on several practical problems of deploying SDN and learn how to solve the problems by taking advantage of existing machine learning techniques. The book elaborates on the formulation of each problem, explains design details for each scheme, and provides solutions by running mathematical optimization processes, conducting simulated experiments, and analyzing the experimental results. N° de réf. du vendeur 9789811948732
Quantité disponible : 1 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -Emerging machine learning techniques bring new opportunities to flexible network control and management. This book focuses on using state-of-the-art machine learning-based approaches to improve the performance of Software-Defined Networking (SDN). It will apply several innovative machine learning methods (e.g., Deep Reinforcement Learning, Multi-Agent Reinforcement Learning, and Graph Neural Network) to traffic engineering and controller load balancing in software-defined wide area networks, as well as flow scheduling, coflow scheduling, and flow migration for network function virtualization in software-defined data center networks. It helps readers reflect on several practical problems of deploying SDN and learn how to solve the problems by taking advantage of existing machine learning techniques. The book elaborates on the formulation of each problem, explains design details for each scheme, and provides solutions by running mathematical optimization processes, conducting simulated experiments, and analyzing the experimental results.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 84 pp. Englisch. N° de réf. du vendeur 9789811948732
Quantité disponible : 2 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9789811948732
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. 1st ed. 2022 edition NO-PA16APR2015-KAP. N° de réf. du vendeur 26396345918
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand. N° de réf. du vendeur 401112545
Quantité disponible : 4 disponible(s)