Articles liés à Federated Learning: Fundamentals and Advances

Federated Learning: Fundamentals and Advances - Couverture rigide

 
9789811970825: Federated Learning: Fundamentals and Advances

Synopsis

This book introduces readers to the fundamentals of and recent advances in federated learning, focusing on reducing communication costs, improving computational efficiency, and enhancing the security level. Federated learning is a distributed machine learning paradigm which enables model training on a large body of decentralized data. Its goal is to make full use of data across organizations or devices while meeting regulatory, privacy, and security requirements.

The book starts with a self-contained introduction to artificial neural networks, deep learning models, supervised learning algorithms, evolutionary algorithms, and evolutionary learning. Concise information is then presented on multi-party secure computation, differential privacy, and homomorphic encryption, followed by a detailed description of federated learning. In turn, the book addresses the latest advances in federate learning research, especially from the perspectives of communication efficiency, evolutionarylearning, and privacy preservation.

The book is particularly well suited for graduate students, academic researchers, and industrial practitioners in the field of machine learning and artificial intelligence. It can also be used as a self-learning resource for readers with a science or engineering background, or as a reference text for graduate courses.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Yaochu Jin is an "Alexander von Humboldt Professor for Artificial Intelligence" in the Faculty of Technology, Bielefeld University, Germany. He is also a part-time Distinguished Chair Professor in Computational Intelligence at the Department of Computer Science, University of Surrey, Guildford, UK. He was a "Finland Distinguished Professor" at the University of Jyväskylä, Finland, "Changjiang Distinguished Visiting Professor" at Northeastern University, China, and "Distinguished Visiting Scholar" at the University of Technology in Sydney, Australia. His main research interests include data-driven optimization, multi-objective optimization, multi-objective learning, trustworthy machine learning, and evolutionary developmental systems. Prof Jin is a Member of Academia Europaea and IEEE Fellow.

Hangyu Zhu received B.Sc. degree from Yangzhou University, Yangzhou, China, in 2015, M.Sc. degree from RMIT University, Melbourne, VIC, Australia, in 2017, and PhD degree from University of Surrey, Guildford, UK, in 2021. He is currently a Lecturer with the Department of Artificial Intelligence and Computer Science, Jiangnan University, China. His main research interests are federated learning and evolutionary neural architecture search.

Jinjin Xu received the B.S and Ph.D. degrees from East China University of Science and Technology, Shanghai, China, in 2017 and 2022, respectively. He is currently a researcher with the Intelligent Perception and Interaction Research Department, OPPO Research Institute, Shanghai, China. His research interests include federated learning, data-driven optimization and its applications.

Yang Chen received Ph.D. from the School of Information and Control Engineering, China University of Mining and Technology, China, in 2019. He was a Research Fellow with the School of Computer Science and Engineering, Nanyang Technological University, Singapore, 2019-2022. He is currently with the School of Electrical Engineering, China University of Mining and Technology, China. His research interests include deep learning, secure machine learning, edge computing, anomaly detection, evolutionary computation, and intelligence optimization.


Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

  • ÉditeurSpringer Verlag, Singapore
  • Date d'édition2022
  • ISBN 10 9811970823
  • ISBN 13 9789811970825
  • ReliureRelié
  • Langueanglais
  • Numéro d'édition1
  • Nombre de pages218
  • Coordonnées du fabricantnon disponible

Acheter neuf

Afficher cet article
EUR 146,12

Autre devise

EUR 9,70 expédition depuis Allemagne vers France

Destinations, frais et délais

Autres éditions populaires du même titre

9789811970856: Federated Learning: Fundamentals and Advances

Edition présentée

ISBN 10 :  9811970858 ISBN 13 :  9789811970856
Editeur : Springer, 2023
Couverture souple

Résultats de recherche pour Federated Learning: Fundamentals and Advances

Image fournie par le vendeur

Jin, Yaochu|Zhu, Hangyu|Xu, Jinjin|Chen, Yang
ISBN 10 : 9811970823 ISBN 13 : 9789811970825
Neuf Couverture rigide
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book introduces readers to the fundamentals of and recent advances in federated learning, focusing on reducing communication costs, improving computational efficiency, and enhancing the security level. Federated learning is a distributed machine lea. N° de réf. du vendeur 697761786

Contacter le vendeur

Acheter neuf

EUR 146,12
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Yaochu Jin
ISBN 10 : 9811970823 ISBN 13 : 9789811970825
Neuf Couverture rigide
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book introduces readers to the fundamentals of and recent advances in federated learning, focusing on reducing communication costs, improving computational efficiency, and enhancing the security level. Federated learning is a distributed machine learning paradigm which enables model training on a large body of decentralized data. Its goal is to make full use of data across organizations or devices while meeting regulatory, privacy, and security requirements. The book starts with a self-contained introduction to artificial neural networks, deep learning models, supervised learning algorithms, evolutionary algorithms, and evolutionary learning. Concise information is then presented on multi-party secure computation, differential privacy, and homomorphic encryption, followed by a detailed description of federated learning. In turn, the book addresses the latest advances in federate learning research, especially from the perspectives of communication efficiency, evolutionarylearning, and privacy preservation.The book is particularly well suited for graduate students, academic researchers, and industrial practitioners in the field of machine learning and artificial intelligence. It can also be used as a self-learning resource for readers with a science or engineering background, or as a reference text for graduate courses. 232 pp. Englisch. N° de réf. du vendeur 9789811970825

Contacter le vendeur

Acheter neuf

EUR 171,19
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Yaochu Jin
ISBN 10 : 9811970823 ISBN 13 : 9789811970825
Neuf Couverture rigide

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book introduces readers to the fundamentals of and recent advances in federated learning, focusing on reducing communication costs, improving computational efficiency, and enhancing the security level. Federated learning is a distributed machine learning paradigm which enables model training on a large body of decentralized data. Its goal is to make full use of data across organizations or devices while meeting regulatory, privacy, and security requirements. The book starts with a self-contained introduction to artificial neural networks, deep learning models, supervised learning algorithms, evolutionary algorithms, and evolutionary learning. Concise information is then presented on multi-party secure computation, differential privacy, and homomorphic encryption, followed by a detailed description of federated learning. In turn, the book addresses the latest advances in federate learning research, especially from the perspectives of communication efficiency, evolutionarylearning, and privacy preservation.The book is particularly well suited for graduate students, academic researchers, and industrial practitioners in the field of machine learning and artificial intelligence. It can also be used as a self-learning resource for readers with a science or engineering background, or as a reference text for graduate courses. N° de réf. du vendeur 9789811970825

Contacter le vendeur

Acheter neuf

EUR 175,09
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Yaochu Jin
ISBN 10 : 9811970823 ISBN 13 : 9789811970825
Neuf Couverture rigide

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Neuware -This book introduces readers to the fundamentals of and recent advances in federated learning, focusing on reducing communication costs, improving computational efficiency, and enhancing the security level. Federated learning is a distributed machine learning paradigm which enables model training on a large body of decentralized data. Its goal is to make full use of data across organizations or devices while meeting regulatory, privacy, and security requirements.The book starts with a self-contained introduction to artificial neural networks, deep learning models, supervised learning algorithms, evolutionary algorithms, and evolutionary learning. Concise information is then presented on multi-party secure computation, differential privacy, and homomorphic encryption, followed by a detailed description of federated learning. In turn, the book addresses the latest advances in federate learning research, especially from the perspectives of communication efficiency, evolutionarylearning, and privacy preservation.The book is particularly well suited for graduate students, academic researchers, and industrial practitioners in the field of machine learning and artificial intelligence. It can also be used as a self-learning resource for readers with a science or engineering background, or as a reference text for graduate courses.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 232 pp. Englisch. N° de réf. du vendeur 9789811970825

Contacter le vendeur

Acheter neuf

EUR 171,19
Autre devise
Frais de port : EUR 15
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Jin, Yaochu/ Zhu, Hangyu/ Xu, Jinjin/ Chen, Yang
Edité par Springer, 2022
ISBN 10 : 9811970823 ISBN 13 : 9789811970825
Neuf Couverture rigide

Vendeur : Revaluation Books, Exeter, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : Brand New. 229 pages. 9.25x6.10x0.71 inches. In Stock. N° de réf. du vendeur zk9811970823

Contacter le vendeur

Acheter neuf

EUR 277,85
Autre devise
Frais de port : EUR 11,87
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier