Articles liés à Mathematical Foundations of Reinforcement Learning

Mathematical Foundations of Reinforcement Learning - Couverture rigide

 
9789819739431: Mathematical Foundations of Reinforcement Learning

Synopsis

This book provides a mathematical yet accessible introduction to the fundamental concepts, core challenges, and classic reinforcement learning algorithms. It aims to help readers understand the theoretical foundations of algorithms, providing insights into their design and functionality. Numerous illustrative examples are included throughout. The mathematical content is carefully structured to ensure readability and approachability.

The book is divided into two parts. The first part is on the mathematical foundations of reinforcement learning, covering topics such as the Bellman equation, Bellman optimality equation, and stochastic approximation. The second part explicates reinforcement learning algorithms, including value iteration and policy iteration, Monte Carlo methods, temporal-difference methods, value function methods, policy gradient methods, and actor-critic methods.

With its comprehensive scope, the book will appeal to undergraduate and graduate students, post-doctoral researchers, lecturers, industrial researchers, and anyone interested in reinforcement learning.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Shiyu Zhao is currently an Associate Professor and Director of the Intelligent Unmanned Systems Laboratory in the School of Engineering at Westlake University, Hangzhou, China. He received his Ph.D. degree in Electrical and Computer Engineering from the National University of Singapore in 2014. Before joining Westlake University in 2019, he was a Lecturer in the Department of Automatic Control and Systems Engineering at the University of Sheffield, UK. His primary research interest lies in decision-making and sensing of multi-robot systems.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter neuf

Afficher cet article
EUR 75,30

Autre devise

EUR 9,70 expédition depuis Allemagne vers France

Destinations, frais et délais

Résultats de recherche pour Mathematical Foundations of Reinforcement Learning

Image fournie par le vendeur

Zhao, Shiyu
ISBN 10 : 9819739438 ISBN 13 : 9789819739431
Neuf Couverture rigide
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book provides a mathematical but friendly introduction to the fundamental concepts, basic problems, and classic algorithms in reinforcement learning. It can help readers understand the theoretical roots of an algorithm and hence why the algorithm wa. N° de réf. du vendeur 1658774905

Contacter le vendeur

Acheter neuf

EUR 75,30
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Shiyu Zhao
ISBN 10 : 9819739438 ISBN 13 : 9789819739431
Neuf Couverture rigide
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book provides a mathematical yet accessible introduction to the fundamental concepts, core challenges, and classic reinforcement learning algorithms. It aims to help readers understand the theoretical foundations of algorithms, providing insights into their design and functionality. Numerous illustrative examples are included throughout. The mathematical content is carefully structured to ensure readability and approachability.The book is divided into two parts. The first part is on the mathematical foundations of reinforcement learning, covering topics such as the Bellman equation, Bellman optimality equation, and stochastic approximation. The second part explicates reinforcement learning algorithms, including value iteration and policy iteration, Monte Carlo methods, temporal-difference methods, value function methods, policy gradient methods, and actor-critic methods.With its comprehensive scope, the book will appeal to undergraduate and graduate students, post-doctoral researchers, lecturers, industrial researchers, and anyone interested in reinforcement learning. Englisch. N° de réf. du vendeur 9789819739431

Contacter le vendeur

Acheter neuf

EUR 85,59
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Shiyu Zhao
ISBN 10 : 9819739438 ISBN 13 : 9789819739431
Neuf Couverture rigide

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Neuware -This book provides a mathematical yet accessible introduction to the fundamental concepts, core challenges, and classic reinforcement learning algorithms. It aims to help readers understand the theoretical foundations of algorithms, providing insights into their design and functionality. Numerous illustrative examples are included throughout. The mathematical content is carefully structured to ensure readability and approachability.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 292 pp. Englisch. N° de réf. du vendeur 9789819739431

Contacter le vendeur

Acheter neuf

EUR 85,59
Autre devise
Frais de port : EUR 15
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Shiyu Zhao
ISBN 10 : 9819739438 ISBN 13 : 9789819739431
Neuf Couverture rigide

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book provides a mathematical yet accessible introduction to the fundamental concepts, core challenges, and classic reinforcement learning algorithms. It aims to help readers understand the theoretical foundations of algorithms, providing insights into their design and functionality. Numerous illustrative examples are included throughout. The mathematical content is carefully structured to ensure readability and approachability.The book is divided into two parts. The first part is on the mathematical foundations of reinforcement learning, covering topics such as the Bellman equation, Bellman optimality equation, and stochastic approximation. The second part explicates reinforcement learning algorithms, including value iteration and policy iteration, Monte Carlo methods, temporal-difference methods, value function methods, policy gradient methods, and actor-critic methods.With its comprehensive scope, the book will appeal to undergraduate and graduate students, post-doctoral researchers, lecturers, industrial researchers, and anyone interested in reinforcement learning. N° de réf. du vendeur 9789819739431

Contacter le vendeur

Acheter neuf

EUR 90,34
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Zhao, Shiyu
Edité par Springer, 2025
ISBN 10 : 9819739438 ISBN 13 : 9789819739431
Neuf Couverture rigide

Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

hardcover. Etat : New. New. book. N° de réf. du vendeur ERICA82998197394386

Contacter le vendeur

Acheter neuf

EUR 203,47
Autre devise
Frais de port : EUR 28,88
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier