Articles liés à Deep Learning-based Detection of Catenary Support Component...

Deep Learning-based Detection of Catenary Support Component Defect and Fault in High-speed Railways - Couverture rigide

 
9789819909520: Deep Learning-based Detection of Catenary Support Component Defect and Fault in High-speed Railways

Synopsis

This book focuses on the deep learning technologies and their applications in the catenary detection of high-speed railways. As the only source of power for high-speed trains, the catenary's service performance directly affects the safe operation of high-speed railways. This book systematically shows the latest research results of catenary detection in high-speed railways, especially the detection of catenary support component defect and fault. Some methods or algorithms have been adopted in practical engineering. These methods or algorithms provide important references and help the researcher, scholar, and engineer on pantograph and catenary technology in high-speed railways. Unlike traditional detection methods of catenary support component based on image processing, some advanced methods in the deep learning field, including convolutional neural network, reinforcement learning, generative adversarial network, etc., are adopted and improved in this book. The main contents include the overview of catenary detection of electrified railways, the introduction of some advance of deep learning theories, catenary support components and their characteristics in high-speed railways, the image reprocessing of catenary support components, the positioning of catenary support components, the detection of defect and fault, the detection based on 3D point cloud, etc.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Zhigang Liu (IEEE Fellow, IET Fellow, AAIA Fellow) received the Ph.D. degree in Power system and its Automation from Southwest Jiaotong University, China in 2003. He is currently a Full Professor of the School of Electrical Engineering, Southwest Jiaotong University, Chengdu. He is also a Guest Professor of Tongji University. Shanghai. He has authored three books and published more than 200 peer-reviewed journal and conference articles. His research interests include the electrical relationship of EMUs and traction, detection, and assessment of pantograph-catenary in high-speed railway. Dr. Liu is an Associate Editor-in-Chief of IEEE Transactions on Instrumentation and Measurement, Associate Editor of IEEE Transactions on Neural Networks and Learning Systems, IEEE Transactions on Intelligent Transportation Systems, IEEE Transactions on Vehicular Technology and IEEE Access. He received the IEEE TIM's Outstanding Associate Editors for 2019, 2020 and 2021, and the Outstanding Reviewer of IEEE Transactions on Instrumentation and Measurement in 2018.
Wenqiang Liu (IEEE Member) received his Ph.D. degree in electrical engineering from the School of Electrical Engineering, Southwest Jiaotong University, Chengdu, China, in 2021. From 2017 to 2019, he was a joint Ph.D. in the Department of Engineering Structures, Delft University of Technology, Delft, the Netherlands. He is currently a postdoc researcher in the Department of National Rail Transit Electrification and Automation Engineering Technology Research Center, the Hong Kong Polytechnic University, Hong Kong, China. His research interests include artificial intelligence, computer vision, imaging, signal processing, and their applications in fault diagnosis and maintenance of railway infrastructures. Dr. Liu is an associate editor of IEEE Transactions on Instrumentation and Measurement (IEEE TIM). He received the IEEE TIM's Outstanding Editor in 2022 and the Outstanding Reviewer in 2021.

Junping Zhong (IEEE Member) received his Ph.D. degree in electrical engineering from Southwest Jiaotong University, Chengdu, China, in 2022. From Oct 2019 to Oct 2020, he is a Ph.D student visitor in the Department of Railway Engineering, Delft University of Technology, Netherlands. From Feb 2023, he is a Postdoctoral Fellow in the Department of Industrial and Systems Engineering, Hong Kong Polytechnic University. His research interests include image processing, signal processing, and their applications in railway infrastructure fault detection. He has published 11 SCI/EI journal papers and 4 conference papers. He severs as a reviewer for IEEE TITS, IEEE TIM, and Applied Soft Computing. He was selected as the Outstanding Reviewer of IEEE Transactions on Instrumentation and Measurement in 2021.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

  • ÉditeurSpringer Verlag, Singapore
  • Date d'édition2023
  • ISBN 10 981990952X
  • ISBN 13 9789819909520
  • ReliureRelié
  • Langueanglais
  • Nombre de pages239
  • Coordonnées du fabricantnon disponible

Acheter D'occasion

Zustand: Hervorragend | Seiten:...
Afficher cet article
EUR 109,40

Autre devise

Gratuit expédition depuis Allemagne vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 146,12

Autre devise

EUR 9,70 expédition depuis Allemagne vers France

Destinations, frais et délais

Autres éditions populaires du même titre

9789819909551: Deep Learning-based Detection of Catenary Support Component Defect and Fault in High-speed Railways

Edition présentée

ISBN 10 :  9819909554 ISBN 13 :  9789819909551
Editeur : Springer Verlag, Singapore, 2024
Couverture souple

Résultats de recherche pour Deep Learning-based Detection of Catenary Support Component...

Image d'archives

Zhigang Liu, Junping Zhong, Wenqiang Liu
Edité par Springer Nature Singapore, 2023
ISBN 10 : 981990952X ISBN 13 : 9789819909520
Ancien ou d'occasion Couverture rigide

Vendeur : Buchpark, Trebbin, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : Hervorragend. Zustand: Hervorragend | Seiten: 256 | Sprache: Englisch | Produktart: Bücher. N° de réf. du vendeur 41461739/1

Contacter le vendeur

Acheter D'occasion

EUR 109,40
Autre devise
Frais de port : Gratuit
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Liu, Zhigang|Liu, Wenqiang|Zhong, Junping
ISBN 10 : 981990952X ISBN 13 : 9789819909520
Neuf Couverture rigide
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book focuses on the deep learning technologies and their applications in the catenary detection of high-speed railways. As the only source of power for high-speed trains, the catenary s service performance directly affects the safe operation of high. N° de réf. du vendeur 812312220

Contacter le vendeur

Acheter neuf

EUR 146,12
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Zhigang Liu
ISBN 10 : 981990952X ISBN 13 : 9789819909520
Neuf Couverture rigide
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book focuses on the deep learning technologies and their applications in the catenary detection of high-speed railways. As the only source of power for high-speed trains, the catenary's service performance directly affects the safe operation of high-speed railways. This book systematically shows the latest research results of catenary detection in high-speed railways, especially the detection of catenary support component defect and fault. Some methods or algorithms have been adopted in practical engineering. These methods or algorithms provide important references and help the researcher, scholar, and engineer on pantograph and catenary technology in high-speed railways. Unlike traditional detection methods of catenary support component based on image processing, some advanced methods in the deep learning field, including convolutional neural network, reinforcement learning, generative adversarial network, etc., are adopted and improved in this book. The main contents include the overview of catenary detection of electrified railways, the introduction of some advance of deep learning theories, catenary support components and their characteristics in high-speed railways, the image reprocessing of catenary support components, the positioning of catenary support components, the detection of defect and fault, the detection based on 3D point cloud, etc. 256 pp. Englisch. N° de réf. du vendeur 9789819909520

Contacter le vendeur

Acheter neuf

EUR 171,19
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Zhigang Liu
ISBN 10 : 981990952X ISBN 13 : 9789819909520
Neuf Couverture rigide

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book focuses on the deep learning technologies and their applications in the catenary detection of high-speed railways. As the only source of power for high-speed trains, the catenary's service performance directly affects the safe operation of high-speed railways. This book systematically shows the latest research results of catenary detection in high-speed railways, especially the detection of catenary support component defect and fault. Some methods or algorithms have been adopted in practical engineering. These methods or algorithms provide important references and help the researcher, scholar, and engineer on pantograph and catenary technology in high-speed railways. Unlike traditional detection methods of catenary support component based on image processing, some advanced methods in the deep learning field, including convolutional neural network, reinforcement learning, generative adversarial network, etc., are adopted and improved in this book. The main contents include the overview of catenary detection of electrified railways, the introduction of some advance of deep learning theories, catenary support components and their characteristics in high-speed railways, the image reprocessing of catenary support components, the positioning of catenary support components, the detection of defect and fault, the detection based on 3D point cloud, etc. N° de réf. du vendeur 9789819909520

Contacter le vendeur

Acheter neuf

EUR 175,09
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Liu, Zhigang; Liu, Wenqiang; Zhong, Junping
Edité par Springer, 2023
ISBN 10 : 981990952X ISBN 13 : 9789819909520
Neuf Couverture rigide

Vendeur : California Books, Miami, FL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur I-9789819909520

Contacter le vendeur

Acheter neuf

EUR 192,98
Autre devise
Frais de port : EUR 7,04
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 5 disponible(s)

Ajouter au panier

Image d'archives

Liu, Zhigang/ Liu, Wenqiang/ Zhong, Junping
Edité par Springer Nature, 2023
ISBN 10 : 981990952X ISBN 13 : 9789819909520
Neuf Couverture rigide

Vendeur : Revaluation Books, Exeter, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : Brand New. 252 pages. 9.25x6.10x0.71 inches. In Stock. N° de réf. du vendeur x-981990952X

Contacter le vendeur

Acheter neuf

EUR 255,55
Autre devise
Frais de port : EUR 11,91
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Zhigang Liu
ISBN 10 : 981990952X ISBN 13 : 9789819909520
Neuf Couverture rigide

Vendeur : Grand Eagle Retail, Fairfield, OH, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : new. Hardcover. This book focuses on the deep learning technologies and their applications in the catenary detection of high-speed railways. As the only source of power for high-speed trains, the catenary's service performance directly affects the safe operation of high-speed railways. This book systematically shows the latest research results of catenary detection in high-speed railways, especially the detection of catenary support component defect and fault. Some methods or algorithms have been adopted in practical engineering. These methods or algorithms provide important references and help the researcher, scholar, and engineer on pantograph and catenary technology in high-speed railways. Unlike traditional detection methods of catenary support component based on image processing, some advanced methods in the deep learning field, including convolutional neural network, reinforcement learning, generative adversarial network, etc., are adopted and improved in this book. The main contents include the overview of catenary detection of electrified railways, the introduction of some advance of deep learning theories, catenary support components and their characteristics in high-speed railways, the image reprocessing of catenary support components, the positioning of catenary support components, the detection of defect and fault, the detection based on 3D point cloud, etc. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9789819909520

Contacter le vendeur

Acheter neuf

EUR 204,39
Autre devise
Frais de port : EUR 65,97
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier