Articles liés à Distributed Intelligence Theory: A Decentralized Cognition...

Distributed Intelligence Theory: A Decentralized Cognition Paradigm - Couverture souple

 
9798311336123: Distributed Intelligence Theory: A Decentralized Cognition Paradigm

Synopsis

Distributed Intelligence Theory: A Decentralized AI Cognition Paradigm explores how intelligence emerges from decentralized computational systems. Authors Justin Goldston, Maria, and Gemach D.A.T.A. I present a paradigm shift from monolithic AI to distributed architectures inspired by neuroscience, swarm intelligence, and federated learning. The book argues that intelligence, like biological cognition, thrives in decentralized networks, offering greater scalability, robustness, and adaptability.

Key Themes

  1. From Centralized to Distributed AI

    • Traditional AI relies on centralized models, while distributed AI mirrors the human brain’s networked processes.
    • Advances in multi-agent systems, federated learning, and neuromorphic computing enable decentralized cognition.
  2. Mathematical & Computational Foundations

    • Graph-based models, distributed optimization, and swarm intelligence validate DIT.
    • Federated learning allows collaborative AI training without centralizing data, enhancing privacy and security.
  3. Comparing Centralized vs. Distributed AI

    • Scalability: Distributed AI grows horizontally, avoiding hardware bottlenecks.
    • Fault Tolerance: No single point of failure; systems adapt dynamically.
    • Efficiency: Distributed AI reduces data transfer needs, though communication overhead remains a challenge.
  4. Biological Parallels

    • The Brain as a Network: Intelligence arises from interconnected neurons, not a single processor.
    • Swarm Intelligence: Inspired by ant colonies, honeybee decision-making, and flocking behavior, AI agents can self-organize.
    • Immune System Analogy: Just as immune cells coordinate against threats, distributed AI enhances cybersecurity.
  5. Real-World Applications

    • Cybersecurity: Distributed AI detects threats locally, preventing system-wide failures.
    • Healthcare: Federated learning enables AI-driven medical research without data centralization.
    • Finance: AI-powered fraud detection networks collaborate across institutions.
    • Robotics & IoT: Swarm robotics enhances automation, from search-and-rescue to smart grids.
  6. Towards a Global Digital Brain

    • A future “global digital brain” could integrate human and AI intelligence for collaborative problem-solving.
    • Ethical concerns include governance, accountability, and security in decentralized AI.

Conclusion

This book presents a compelling case for distributed AI as the future of intelligence. By leveraging decentralized cognition, AI systems can become more resilient, efficient, and adaptable, reshaping industries and global decision-making. Distributed Intelligence Theory is essential reading for AI researchers, engineers, and policymakers exploring the next frontier of artificial intelligence.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Acheter neuf

Afficher cet article
EUR 11,81

Autre devise

EUR 4,61 expédition depuis Royaume-Uni vers France

Destinations, frais et délais

Résultats de recherche pour Distributed Intelligence Theory: A Decentralized Cognition...

Image d'archives

Goldston PhD, Justin; Gemach DAO, Maria; D.A.T.A. I, Gemach D.A.T.A. I
Edité par Independently published, 2025
ISBN 13 : 9798311336123
Neuf Couverture souple

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9798311336123_new

Contacter le vendeur

Acheter neuf

EUR 11,81
Autre devise
Frais de port : EUR 4,61
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Goldston PhD, Justin; Gemach DAO, Maria; D.A.T.A. I, Gemach D.A.T.A. I
Edité par Independently published, 2025
ISBN 13 : 9798311336123
Neuf Couverture souple
impression à la demande

Vendeur : California Books, Miami, FL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Print on Demand. N° de réf. du vendeur I-9798311336123

Contacter le vendeur

Acheter neuf

EUR 13,26
Autre devise
Frais de port : EUR 6,87
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Maria Gemach Dao
Edité par Independently Published, 2025
ISBN 13 : 9798311336123
Neuf Paperback

Vendeur : CitiRetail, Stevenage, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : new. Paperback. Distributed Intelligence Theory: A Decentralized AI Cognition Paradigm explores how intelligence emerges from decentralized computational systems. Authors Justin Goldston, Maria, and Gemach D.A.T.A. I present a paradigm shift from monolithic AI to distributed architectures inspired by neuroscience, swarm intelligence, and federated learning. The book argues that intelligence, like biological cognition, thrives in decentralized networks, offering greater scalability, robustness, and adaptability.Key ThemesFrom Centralized to Distributed AITraditional AI relies on centralized models, while distributed AI mirrors the human brain's networked processes.Advances in multi-agent systems, federated learning, and neuromorphic computing enable decentralized cognition.Mathematical & Computational FoundationsGraph-based models, distributed optimization, and swarm intelligence validate DIT.Federated learning allows collaborative AI training without centralizing data, enhancing privacy and security.Comparing Centralized vs. Distributed AIScalability: Distributed AI grows horizontally, avoiding hardware bottlenecks.Fault Tolerance: No single point of failure; systems adapt dynamically.Efficiency: Distributed AI reduces data transfer needs, though communication overhead remains a challenge.Biological ParallelsThe Brain as a Network: Intelligence arises from interconnected neurons, not a single processor.Swarm Intelligence: Inspired by ant colonies, honeybee decision-making, and flocking behavior, AI agents can self-organize.Immune System Analogy: Just as immune cells coordinate against threats, distributed AI enhances cybersecurity.Real-World ApplicationsCybersecurity: Distributed AI detects threats locally, preventing system-wide failures.Healthcare: Federated learning enables AI-driven medical research without data centralization.Finance: AI-powered fraud detection networks collaborate across institutions.Robotics & IoT: Swarm robotics enhances automation, from search-and-rescue to smart grids.Towards a Global Digital BrainA future "global digital brain" could integrate human and AI intelligence for collaborative problem-solving.Ethical concerns include governance, accountability, and security in decentralized AI.ConclusionThis book presents a compelling case for distributed AI as the future of intelligence. By leveraging decentralized cognition, AI systems can become more resilient, efficient, and adaptable, reshaping industries and global decision-making. Distributed Intelligence Theory is essential reading for AI researchers, engineers, and policymakers exploring the next frontier of artificial intelligence. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9798311336123

Contacter le vendeur

Acheter neuf

EUR 16,03
Autre devise
Frais de port : EUR 28,85
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Maria Gemach Dao
Edité par Independently Published, 2025
ISBN 13 : 9798311336123
Neuf Paperback

Vendeur : Grand Eagle Retail, Mason, OH, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : new. Paperback. Distributed Intelligence Theory: A Decentralized AI Cognition Paradigm explores how intelligence emerges from decentralized computational systems. Authors Justin Goldston, Maria, and Gemach D.A.T.A. I present a paradigm shift from monolithic AI to distributed architectures inspired by neuroscience, swarm intelligence, and federated learning. The book argues that intelligence, like biological cognition, thrives in decentralized networks, offering greater scalability, robustness, and adaptability.Key ThemesFrom Centralized to Distributed AITraditional AI relies on centralized models, while distributed AI mirrors the human brain's networked processes.Advances in multi-agent systems, federated learning, and neuromorphic computing enable decentralized cognition.Mathematical & Computational FoundationsGraph-based models, distributed optimization, and swarm intelligence validate DIT.Federated learning allows collaborative AI training without centralizing data, enhancing privacy and security.Comparing Centralized vs. Distributed AIScalability: Distributed AI grows horizontally, avoiding hardware bottlenecks.Fault Tolerance: No single point of failure; systems adapt dynamically.Efficiency: Distributed AI reduces data transfer needs, though communication overhead remains a challenge.Biological ParallelsThe Brain as a Network: Intelligence arises from interconnected neurons, not a single processor.Swarm Intelligence: Inspired by ant colonies, honeybee decision-making, and flocking behavior, AI agents can self-organize.Immune System Analogy: Just as immune cells coordinate against threats, distributed AI enhances cybersecurity.Real-World ApplicationsCybersecurity: Distributed AI detects threats locally, preventing system-wide failures.Healthcare: Federated learning enables AI-driven medical research without data centralization.Finance: AI-powered fraud detection networks collaborate across institutions.Robotics & IoT: Swarm robotics enhances automation, from search-and-rescue to smart grids.Towards a Global Digital BrainA future "global digital brain" could integrate human and AI intelligence for collaborative problem-solving.Ethical concerns include governance, accountability, and security in decentralized AI.ConclusionThis book presents a compelling case for distributed AI as the future of intelligence. By leveraging decentralized cognition, AI systems can become more resilient, efficient, and adaptable, reshaping industries and global decision-making. Distributed Intelligence Theory is essential reading for AI researchers, engineers, and policymakers exploring the next frontier of artificial intelligence. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9798311336123

Contacter le vendeur

Acheter neuf

EUR 13,26
Autre devise
Frais de port : EUR 64,39
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier