A deep dive into the theory and mathematics behind neural networks, beyond typical AI applications.
Area of focus:
- Grasp complex statistical learning theories and their application in neural frameworks.
- Explore universal approximation theorems to understand network capabilities.
- Delve into the trade-offs between neural network depth and width.
- Analyze the optimization landscapes to enhance training performance.
- Study advanced gradient optimization methods for efficient training.
- Investigate generalization theories applicable to deep learning models.
- Examine regularization techniques with a strong theoretical foundation.
- Apply the Information Bottleneck principle for better learning insights.
- Understand the role of stochasticity and its impact on neural networks.
- Master Bayesian techniques for uncertainty quantification and posterior inference.
- Model neural networks using dynamical systems theory for stability analysis.
- Learn representation learning and the geometry of feature spaces for transfer learning.
- Explore theoretical insights into Convolutional Neural Networks (CNNs).
- Analyze Recurrent Neural Networks (RNNs) for sequence data and temporal predictions.
- Discover the theoretical underpinnings of attention mechanisms and transformers.
- Study generative models like VAEs and GANs for creating new data.
- Dive into energy-based models and Boltzmann machines for unsupervised learning.
- Understand neural tangent kernel frameworks and infinite width networks.
- Examine symmetries and invariances in neural network design.
- Explore optimization methodologies beyond traditional gradient descent.
- Enhance model robustness by learning about adversarial examples.
- Address challenges in continual learning and overcome catastrophic forgetting.
- Interpret sparse coding theories and design efficient, interpretable models.
- Link neural networks with differential equations for theoretical advancements.
- Analyze graph neural networks for relational learning on complex data structures.
- Grasp the principles of meta-learning for quick adaptation and hypothesis search.
- Delve into quantum neural networks for pushing the boundaries of computation.
- Investigate neuromorphic computing models such as spiking neural networks.
- Decode neural networks' decisions through explainability and interpretability methods.
- Reflect on the ethical and philosophical implications of advanced AI technologies.
- Discuss the theoretical limitations and unresolved challenges of neural networks.
- Learn how topological data analysis informs neural network decision boundaries.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 48339729-n
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. Print on Demand. N° de réf. du vendeur I-9798339808039
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 48339729
Quantité disponible : Plus de 20 disponibles
Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni
Paperback. Etat : New. N° de réf. du vendeur LU-9798339808039
Quantité disponible : Plus de 20 disponibles
Vendeur : Rarewaves USA, OSWEGO, IL, Etats-Unis
Paperback. Etat : New. N° de réf. du vendeur LU-9798339808039
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9798339808039_new
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 48339729-n
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 48339729
Quantité disponible : Plus de 20 disponibles
Vendeur : CitiRetail, Stevenage, Royaume-Uni
Paperback. Etat : new. Paperback. A deep dive into the theory and mathematics behind neural networks, beyond typical AI applications. Area of focus: - Grasp complex statistical learning theories and their application in neural frameworks.- Explore universal approximation theorems to understand network capabilities.- Delve into the trade-offs between neural network depth and width.- Analyze the optimization landscapes to enhance training performance.- Study advanced gradient optimization methods for efficient training.- Investigate generalization theories applicable to deep learning models.- Examine regularization techniques with a strong theoretical foundation.- Apply the Information Bottleneck principle for better learning insights.- Understand the role of stochasticity and its impact on neural networks.- Master Bayesian techniques for uncertainty quantification and posterior inference.- Model neural networks using dynamical systems theory for stability analysis.- Learn representation learning and the geometry of feature spaces for transfer learning.- Explore theoretical insights into Convolutional Neural Networks (CNNs).- Analyze Recurrent Neural Networks (RNNs) for sequence data and temporal predictions.- Discover the theoretical underpinnings of attention mechanisms and transformers.- Study generative models like VAEs and GANs for creating new data.- Dive into energy-based models and Boltzmann machines for unsupervised learning.- Understand neural tangent kernel frameworks and infinite width networks.- Examine symmetries and invariances in neural network design.- Explore optimization methodologies beyond traditional gradient descent.- Enhance model robustness by learning about adversarial examples.- Address challenges in continual learning and overcome catastrophic forgetting.- Interpret sparse coding theories and design efficient, interpretable models.- Link neural networks with differential equations for theoretical advancements.- Analyze graph neural networks for relational learning on complex data structures.- Grasp the principles of meta-learning for quick adaptation and hypothesis search.- Delve into quantum neural networks for pushing the boundaries of computation.- Investigate neuromorphic computing models such as spiking neural networks.- Decode neural networks' decisions through explainability and interpretability methods.- Reflect on the ethical and philosophical implications of advanced AI technologies.- Discuss the theoretical limitations and unresolved challenges of neural networks.- Learn how topological data analysis informs neural network decision boundaries. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9798339808039
Quantité disponible : 1 disponible(s)
Vendeur : Rarewaves USA United, OSWEGO, IL, Etats-Unis
Paperback. Etat : New. N° de réf. du vendeur LU-9798339808039
Quantité disponible : Plus de 20 disponibles