Data Science and Productivity Analytics (Hardcover)

Vincent Charles

ISBN 10: 3030433838 ISBN 13: 9783030433833
Edité par Springer Nature Switzerland AG, Cham, 2020
Neuf(s) Hardcover

Vendeur AussieBookSeller, Truganina, VIC, Australie Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Vendeur AbeBooks depuis 22 juin 2007


A propos de cet article

Description :

Hardcover. This book includes a spectrum of concepts, such as performance, productivity, operations research, econometrics, and data science, for the practically and theoretically important areas of productivity analysis/data envelopment analysis and data science/big data. Data science is defined as the collection of scientific methods, processes, and systems dedicated to extracting knowledge or insights from data and it develops on concepts from various domains, containing mathematics and statistical methods, operations research, machine learning, computer programming, pattern recognition, and data visualisation, among others.Examples of data science techniques include linear and logistic regressions, decision trees, Naive Bayesian classifier, principal component analysis, neural networks, predictive modelling, deep learning, text analysis, survival analysis, and so on, all of which allow using the data to make more intelligent decisions. On the other hand, it is without a doubtthat nowadays the amount of data is exponentially increasing, and analysing large data sets has become a key basis of competition and innovation, underpinning new waves of productivity growth. This book aims to bring a fresh look onto the various ways that data science techniques could unleash value and drive productivity from these mountains of data.Researchers working in productivity analysis/data envelopment analysis will benefit from learning about the tools available in data science/big data that can be used in their current research analyses and endeavours. The data scientists, on the other hand, will also get benefit from learning about the plethora of applications available in productivity analysis/data envelopment analysis. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. N° de réf. du vendeur 9783030433833

Signaler cet article

Synopsis :

This book includes a spectrum of concepts, such as performance, productivity, operations research, econometrics, and data science, for the practically and theoretically important areas of 'productivity analysis/data envelopment analysis' and 'data science/big data'. Data science is defined as the collection of scientific methods, processes, and systems dedicated to extracting knowledge or insights from data and it develops on concepts from various domains, containing mathematics and statistical methods, operations research, machine learning, computer programming, pattern recognition, and data visualisation, among others.

Examples of data science techniques include linear and logistic regressions, decision trees, Naïve Bayesian classifier, principal component analysis, neural networks, predictive modelling, deep learning, text analysis, survival analysis, and so on, all of which allow using the data to make more intelligent decisions. On the other hand, it is without a doubtthat nowadays the amount of data is exponentially increasing, and analysing large data sets has become a key basis of competition and innovation, underpinning new waves of productivity growth. This book aims to bring a fresh look onto the various ways that data science techniques could unleash value and drive productivity from these mountains of data.

Researchers working in productivity analysis/data envelopment analysis will benefit from learning about the tools available in data science/big data that can be used in their current research analyses and endeavours. The data scientists, on the other hand, will also get benefit from learning about the plethora of applications available in productivity analysis/data envelopment analysis.

À propos de l?auteur: Vincent Charles is an experienced researcher in the field of Artificial Intelligence and Management Science, currently with the School of Management, University of Bradford. He has more than two decades of teaching, research, and consultancy experience, having been a full professor and director of research for more than a decade. He has published over 130 research outputs. He is a recipient of many international academic honours and awards.
Juan Aparicio is an Associate Professor at the Department of Statistics, Mathematics an Information Technology of the University Miguel Hernandez, Elche (Alicante), Spain. He is the director of the Center of Operations Research and is also Co-Chair (with Knox Lovell) of the Santander Chair on Efficiency and Productivity. He has published over 100 research contributions, mainly on Data Envelopment Analysis, Efficiency and Productivity Analysis.
Joe Zhu is Professor of Operations Analytics in the Foisie Business School, Worcester Polytechnic Institute. He is an internationally recognized expert in methods of performance evaluation and benchmarking using Data Envelopment Analysis (DEA), and his research interests are in the areas of operations and business analytics, productivity modeling, and performance evaluation and benchmarking. He has published and co-edited several books focusing on performance evaluation and benchmarking using DEA and developed the DEA Frontier software.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Détails bibliographiques

Titre : Data Science and Productivity Analytics (...
Éditeur : Springer Nature Switzerland AG, Cham
Date d'édition : 2020
Reliure : Hardcover
Etat : new

Meilleurs résultats de recherche sur AbeBooks

Image fournie par le vendeur

Charles, Vincent|Aparicio, Juan|Zhu, Joe
ISBN 10 : 3030433838 ISBN 13 : 9783030433833
Neuf Couverture rigide
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Gebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. First book to combine DEA and Data ScienceEditors and Contributors at the forefront of field worldwideIllustrates how Data Science techniques can unleash value and drive productivityVincent Charles is an experienced researcher in the fiel. N° de réf. du vendeur 448682072

Contacter le vendeur

Acheter neuf

EUR 136,16
Frais de port : EUR 48,99
De Allemagne vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Vincent Charles (u. a.)
Edité par Springer Nature Switzerland, 2020
ISBN 10 : 3030433838 ISBN 13 : 9783030433833
Neuf Couverture rigide
impression à la demande

Vendeur : preigu, Osnabrück, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Data Science and Productivity Analytics | Vincent Charles (u. a.) | Buch | x | Englisch | 2020 | Springer Nature Switzerland | EAN 9783030433833 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. N° de réf. du vendeur 118023342

Contacter le vendeur

Acheter neuf

EUR 141,30
Frais de port : EUR 70
De Allemagne vers Etats-Unis

Quantité disponible : 5 disponible(s)

Ajouter au panier

Image d'archives

Charles
Edité par Springer, 2020
ISBN 10 : 3030433838 ISBN 13 : 9783030433833
Neuf Couverture rigide

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9783030433833_new

Contacter le vendeur

Acheter neuf

EUR 145,13
Frais de port : EUR 13,60
De Royaume-Uni vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Charles
Edité par Springer, 2020
ISBN 10 : 3030433838 ISBN 13 : 9783030433833
Neuf Couverture rigide

Vendeur : Best Price, Torrance, CA, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. SUPER FAST SHIPPING. N° de réf. du vendeur 9783030433833

Contacter le vendeur

Acheter neuf

EUR 150,09
Frais de port : EUR 7,75
Vers Etats-Unis

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Charles
Edité par Springer, 2020
ISBN 10 : 3030433838 ISBN 13 : 9783030433833
Neuf Couverture rigide

Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur ABLIING23Mar3113020017608

Contacter le vendeur

Acheter neuf

EUR 159,34
Frais de port : EUR 3,44
Vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Vincent Charles
ISBN 10 : 3030433838 ISBN 13 : 9783030433833
Neuf Couverture rigide

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Neuware -This book includes a spectrum of concepts, such as performance, productivity, operations research, econometrics, and data science, for the practically and theoretically important areas of ¿productivity analysis/data envelopment analysis¿ and ¿data science/big datä. Data science is defined as the collection of scientific methods, processes, and systems dedicated to extracting knowledge or insights from data and it develops on concepts from various domains, containing mathematics and statistical methods, operations research, machine learning, computer programming, pattern recognition, and data visualisation, among others.Examples of data science techniques include linear and logistic regressions, decision trees, Naïve Bayesian classifier, principal component analysis, neural networks, predictive modelling, deep learning, text analysis, survival analysis, and so on, all of which allow using the data to make more intelligent decisions. On the other hand, it is without a doubtthat nowadays the amount of data is exponentially increasing, and analysing large data sets has become a key basis of competition and innovation, underpinning new waves of productivity growth. This book aims to bring a fresh look onto the various ways that data science techniques could unleash value and drive productivity from these mountains of data.Researchers working in productivity analysis/data envelopment analysis will benefit from learning about the tools available in data science/big data that can be used in their current research analyses and endeavours. The data scientists, on the other hand, will also get benefit from learning about the plethora of applications available in productivity analysis/data envelopment analysis.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 452 pp. Englisch. N° de réf. du vendeur 9783030433833

Contacter le vendeur

Acheter neuf

EUR 160,49
Frais de port : EUR 60
De Allemagne vers Etats-Unis

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Vincent Charles
ISBN 10 : 3030433838 ISBN 13 : 9783030433833
Neuf Couverture rigide

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book includes a spectrum of concepts, such as performance, productivity, operations research, econometrics, and data science, for the practically and theoretically important areas of 'productivity analysis/data envelopment analysis' and 'data science/big data'. Data science is defined as the collection of scientific methods, processes, and systems dedicated to extracting knowledge or insights from data and it develops on concepts from various domains, containing mathematics and statistical methods, operations research, machine learning, computer programming, pattern recognition, and data visualisation, among others.Examples of data science techniques include linear and logistic regressions, decision trees, Naïve Bayesian classifier, principal component analysis, neural networks, predictive modelling, deep learning, text analysis, survival analysis, and so on, all of which allow using the data to make more intelligent decisions. On the other hand, it is without a doubtthat nowadays the amount of data is exponentially increasing, and analysing large data sets has become a key basis of competition and innovation, underpinning new waves of productivity growth. This book aims to bring a fresh look onto the various ways that data science techniques could unleash value and drive productivity from these mountains of data.Researchers working in productivity analysis/data envelopment analysis will benefit from learning about the tools available in data science/big data that can be used in their current research analyses and endeavours. The data scientists, on the other hand, will also get benefit from learning about the plethora of applications available in productivity analysis/data envelopment analysis. N° de réf. du vendeur 9783030433833

Contacter le vendeur

Acheter neuf

EUR 160,49
Frais de port : EUR 64,20
De Allemagne vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Vincent Charles
ISBN 10 : 3030433838 ISBN 13 : 9783030433833
Neuf Couverture rigide
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book includes a spectrum of concepts, such as performance, productivity, operations research, econometrics, and data science, for the practically and theoretically important areas of 'productivity analysis/data envelopment analysis' and 'data science/big data'. Data science is defined as the collection of scientific methods, processes, and systems dedicated to extracting knowledge or insights from data and it develops on concepts from various domains, containing mathematics and statistical methods, operations research, machine learning, computer programming, pattern recognition, and data visualisation, among others.Examples of data science techniques include linear and logistic regressions, decision trees, Naïve Bayesian classifier, principal component analysis, neural networks, predictive modelling, deep learning, text analysis, survival analysis, and so on, all of which allow using the data to make more intelligent decisions. On the other hand, it is without a doubtthat nowadays the amount of data is exponentially increasing, and analysing large data sets has become a key basis of competition and innovation, underpinning new waves of productivity growth. This book aims to bring a fresh look onto the various ways that data science techniques could unleash value and drive productivity from these mountains of data.Researchers working in productivity analysis/data envelopment analysis will benefit from learning about the tools available in data science/big data that can be used in their current research analyses and endeavours. The data scientists, on the other hand, will also get benefit from learning about the plethora of applications available in productivity analysis/data envelopment analysis. 452 pp. Englisch. N° de réf. du vendeur 9783030433833

Contacter le vendeur

Acheter neuf

EUR 160,49
Frais de port : EUR 23
De Allemagne vers Etats-Unis

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Charles
Edité par Springer, 2020
ISBN 10 : 3030433838 ISBN 13 : 9783030433833
Neuf Couverture rigide

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 26376515684

Contacter le vendeur

Acheter neuf

EUR 203,87
Frais de port : EUR 3,44
Vers Etats-Unis

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Charles
Edité par Springer, 2020
ISBN 10 : 3030433838 ISBN 13 : 9783030433833
Neuf Couverture rigide
impression à la demande

Vendeur : Majestic Books, Hounslow, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Print on Demand. N° de réf. du vendeur 369529787

Contacter le vendeur

Acheter neuf

EUR 218,76
Frais de port : EUR 7,38
De Royaume-Uni vers Etats-Unis

Quantité disponible : 4 disponible(s)

Ajouter au panier

There are 3 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre