Monoidal Functors, Species and Hopf Algebras (Hardback)

Marcelo Aguiar, Swapneel Mahajan

Edité par American Mathematical Society, 2010
ISBN 10: 0821847767 / ISBN 13: 9780821847763
Ancien(s) ou d'occasion / Hardback / Quantité : 0
Disponible auprès d'autres vendeurs
Afficher tous les  exemplaires de ce livre

Au sujet du livre

Ce livre n'est malheureusement plus disponible. AbeBooks dispose cependant de millions de livres. Ci-dessous, nous vous proposons une liste de livres pouvant correspondre à votre recherche.

Description :

Language: English . Brand New Book. This research monograph integrates ideas from category theory, algebra and combinatorics. It is organised in three parts. Part I belongs to the realm of category theory. It reviews some of the foundational work of Benabou, Eilenberg, Kelly and Mac Lane on monoidal categories and of Joyal and Street on braided monoidal categories, and proceeds to study higher monoidal categories and higher monoidal functors. Special attention is devoted to the notion of a bilax monoidal functor which plays a central role in this work. Combinatorics and geometry are the theme of Part II. Joyal s species constitute a good framework for the study of algebraic structures associated to combinatorial objects. This part discusses the category of species focusing particularly on the Hopf monoids therein. The notion of a Hopf monoid in species parallels that of a Hopf algebra and reflects the manner in which combinatorial structures compose and decompose. Numerous examples of Hopf monoids are given in the text. These are constructed from combinatorial and geometric data and inspired by ideas of Rota and Tits theory of Coxeter complexes. Part III is of an algebraic nature and shows how ideas in Parts I and II lead to a unified approach to Hopf algebras. The main step is the construction of Fock functors from species to graded vector spaces. These functors are bilax monoidal and thus translate Hopf monoids in species to graded Hopf algebras. This functorial construction of Hopf algebras encompasses both quantum groups and the Hopf algebras of recent prominence in the combinatorics literature. The monograph opens a vast new area of research. It is written with clarity and sufficient detail to make it accessible to advanced graduate students. Titles in this series are co-published with the Centre de Recherches Mathematiques.|This research monograph integrates ideas from category theory, algebra and combinatorics. It is organised in three parts. Part I belongs to the realm of category theory. It reviews some of the foundational work of Benabou, Eilenberg, Kelly and Mac Lane on monoidal categories and of Joyal and Street on braided monoidal categories, and proceeds to study higher monoidal categories and higher monoidal functors. Special attention is devoted to the notion of a bilax monoidal functor which plays a central role in this work. Combinatorics and geometry are the theme of Part II. Joyal s species constitute a good framework for the study of algebraic structures associated to combinatorial objects. This part discusses the category of species focusing particularly on the Hopf monoids therein. The notion of a Hopf monoid in species parallels that of a Hopf algebra and reflects the manner in which combinatorial structures compose and decompose. Numerous examples of Hopf monoids are given in the text. These are constructed from combinatorial and geometric data and inspired by ideas of Rota and Tits theory of Coxeter complexes. Part III is of an algebraic nature and shows how ideas in Parts I and II lead to a unified approach to Hopf algebras. The main step is the construction of Fock functors from species to graded vector spaces. These functors are bilax monoidal and thus translate Hopf monoids in species to graded Hopf algebras. This functorial construction of Hopf algebras encompasses both quantum groups and the Hopf algebras of recent prominence in the combinatorics literature. The monograph opens a vast new area of research. It is written with clarity and sufficient detail to make it accessible to advanced graduate students. Titles in this series are co-published with the Centre de Recherches Mathematiques. N° de réf. du libraire

A propos du livre :

Book ratings provided by Goodreads) :
0 note moyenne
(0 avis)

Synopsis : This research monograph integrates ideas from category theory, algebra and combinatorics. It is organized in three parts. Part I belongs to the realm of category theory. It reviews some of the foundational work of Bénabou, Eilenberg, Kelly and Mac Lane on monoidal categories and of Joyal and Street on braided monoidal categories, and proceeds to study higher monoidal categories and higher monoidal functors. Special attention is devoted to the notion of a bilax monoidal functor which plays a central role in this work. Combinatorics and geometry are the theme of Part II. Joyal's species constitute a good framework for the study of algebraic structures associated to combinatorial objects. This part discusses the category of species focusing particularly on the Hopf monoids therein. The notion of a Hopf monoid in species parallels that of a Hopf algebra and reflects the manner in which combinatorial structures compose and decompose. Numerous examples of Hopf monoids are given in the text. These are constructed from combinatorial and geometric data and inspired by ideas of Rota and Tits' theory of Coxeter complexes. Part III is of an algebraic nature and shows how ideas in Parts I and II lead to a unified approach to Hopf algebras. The main step is the construction of Fock functors from species to graded vector spaces. These functors are bilax monoidal and thus translate Hopf monoids in species to graded Hopf algebras. This functorial construction of Hopf algebras encompasses both quantum groups and the Hopf algebras of recent prominence in the combinatorics literature. The monograph opens a vast new area of research. It is written with clarity and sufficient detail to make it accessible to advanced graduate students. Titles in this series are co-published with the Centre de Recherches Mathématiques.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Détails bibliographiques

Titre : Monoidal Functors, Species and Hopf Algebras...
Éditeur : American Mathematical Society
Date d'édition : 2010
Reliure : Hardback
Etat du livre : New

Meilleurs résultats de recherche sur AbeBooks

1.

Marcelo Aguiar, Swapneel Mahajan
Edité par American Mathematical Society (2010)
ISBN 10 : 0821847767 ISBN 13 : 9780821847763
Ancien(s) ou d'occasion Quantité : 1
Vendeur
Better World Books: West
(Reno, NV, Etats-Unis)
Evaluation vendeur
[?]

Description du livre American Mathematical Society, 2010. État : Very Good. Ships from Reno, NV. Great condition for a used book! Minimal wear. N° de réf. du libraire GRP95838850

Plus d'informations sur ce vendeur | Poser une question au libraire

Acheter D'occasion
EUR 106,18
Autre devise

Ajouter au panier

Frais de port : Gratuit
Vers Etats-Unis
Destinations, frais et délais

2.

Marcelo Aguiar; Swapneel Mahajan
Edité par American Mathematical Society (2010)
ISBN 10 : 0821847767 ISBN 13 : 9780821847763
Neuf(s) Couverture rigide Quantité : > 20
Vendeur
Sequitur Books
(Boonsboro, MD, Etats-Unis)
Evaluation vendeur
[?]

Description du livre American Mathematical Society, 2010. Hardcover. État : New. Brand new. We distribute directly for the publisher. This research monograph integrates ideas from category theory, algebra and combinatorics. It is organized in three parts.Part I belongs to the realm of category theory. It reviews some of the foundational work of Bénabou, Eilenberg, Kelly and Mac Lane on monoidal categories and of Joyal and Street on braided monoidal categories, and proceeds to study higher monoidal categories and higher monoidal functors. Special attention is devoted to the notion of a bilax monoidal functor which plays a central role in this work.Combinatorics and geometry are the theme of Part II. Joyal's species constitute a good framework for the study of algebraic structures associated to combinatorial objects. This part discusses the category of species focusing particularly on the Hopf monoids therein. The notion of a Hopf monoid in species parallels that of a Hopf algebra and reflects the manner in which combinatorial structures compose and decompose. Numerous examples of Hopf monoids are given in the text. These are constructed from combinatorial and geometric data and inspired by ideas of Rota and Tits' theory of Coxeter complexes.Part III is of an algebraic nature and shows how ideas in Parts I and II lead to a unified approach to Hopf algebras. The main step is the construction of Fock functors from species to graded vector spaces. These functors are bilax monoidal and thus translate Hopf monoids in species to graded Hopf algebras. This functorial construction of Hopf algebras encompasses both quantum groups and the Hopf algebras of recent prominence in the combinatorics literature. N° de réf. du libraire 1011190028

Plus d'informations sur ce vendeur | Poser une question au libraire

Acheter neuf
EUR 131,98
Autre devise

Ajouter au panier

Frais de port : EUR 3,44
Vers Etats-Unis
Destinations, frais et délais

3.

Marcelo Aguiar, Swapneel Mahajan
Edité par American Mathematical Society (2010)
ISBN 10 : 0821847767 ISBN 13 : 9780821847763
Neuf(s) Couverture rigide Quantité : 1
Vendeur
Ergodebooks
(RICHMOND, TX, Etats-Unis)
Evaluation vendeur
[?]

Description du livre American Mathematical Society, 2010. Hardcover. État : New. N° de réf. du libraire DADAX0821847767

Plus d'informations sur ce vendeur | Poser une question au libraire

Acheter neuf
EUR 179,05
Autre devise

Ajouter au panier

Frais de port : EUR 3,43
Vers Etats-Unis
Destinations, frais et délais

4.

Marcelo Aguiar, Swapneel Mahajan
Edité par American Mathematical Society (2010)
ISBN 10 : 0821847767 ISBN 13 : 9780821847763
Neuf(s) Couverture rigide Quantité : 2
Vendeur
Murray Media
(North Miami Beach, FL, Etats-Unis)
Evaluation vendeur
[?]

Description du livre American Mathematical Society, 2010. Hardcover. État : New. N° de réf. du libraire P110821847767

Plus d'informations sur ce vendeur | Poser une question au libraire

Acheter neuf
EUR 190,23
Autre devise

Ajouter au panier

Frais de port : EUR 2,57
Vers Etats-Unis
Destinations, frais et délais

5.

Marcelo Aguiar
Edité par American Mathematical Society (2010)
ISBN 10 : 0821847767 ISBN 13 : 9780821847763
Ancien(s) ou d'occasion Couverture rigide Quantité : 1
Vendeur
Books Express
(Portsmouth, NH, Etats-Unis)
Evaluation vendeur
[?]

Description du livre American Mathematical Society, 2010. Hardcover. État : Good. Ships with Tracking Number! INTERNATIONAL WORLDWIDE Shipping available. May not contain Access Codes or Supplements. Buy with confidence, excellent customer service!. N° de réf. du libraire 0821847767

Plus d'informations sur ce vendeur | Poser une question au libraire

Acheter D'occasion
EUR 334,98
Autre devise

Ajouter au panier

Frais de port : Gratuit
Vers Etats-Unis
Destinations, frais et délais