Local Multipliers of C*-Algebras

Note moyenne 0
( 0 avis fournis par Goodreads )
 
9781852332372: Local Multipliers of C*-Algebras
Afficher les exemplaires de cette édition ISBN
 
 
EUR 125,70

Autre devise

Frais de port : Gratuit
De Royaume-Uni vers Etats-Unis

Destinations, frais et délais

Ajouter au panier

Autres éditions populaires du même titre

9781447110682: Local Multipliers of C*-Algebras

Edition présentée

ISBN 10 :  1447110684 ISBN 13 :  9781447110682
Editeur : Springer, 2013
Couverture souple

Meilleurs résultats de recherche sur AbeBooks

1.

Pere Ara, Martin Mathieu
Edité par Springer London Ltd, United Kingdom (2002)
ISBN 10 : 1852332379 ISBN 13 : 9781852332372
Neuf Couverture rigide Quantité disponible : 10
Vendeur
Book Depository hard to find
(London, Royaume-Uni)
Evaluation vendeur

Description du livre Springer London Ltd, United Kingdom, 2002. Hardback. Etat : New. 2003 ed. Language: English. Brand new Book. Many problems in operator theory lead to the consideration ofoperator equa tions, either directly or via some reformulation. More often than not, how ever, the underlying space is too 'small' to contain solutions of these equa tions and thus it has to be 'enlarged' in some way. The Berberian-Quigley enlargement of a Banach space, which allows one to convert approximate into genuine eigenvectors, serves as a classical example. In the theory of operator algebras, a C*-algebra A that turns out to be small in this sense tradition ally is enlarged to its (universal) enveloping von Neumann algebra A". This works well since von Neumann algebras are in many respects richer and, from the Banach space point of view, A" is nothing other than the second dual space of A. Among the numerous fruitful applications of this principle is the well-known Kadison-Sakai theorem ensuring that every derivation 8 on a C*-algebra A becomes inner in A", though 8 may not be inner in A. The transition from A to A" however is not an algebraic one (and cannot be since it is well known that the property of being a von Neumann algebra cannot be described purely algebraically). Hence, ifthe C*-algebra A is small in an algebraic sense, say simple, it may be inappropriate to move on to A". In such a situation, A is typically enlarged by its multiplier algebra M(A). N° de réf. du vendeur LIE9781852332372

Plus d'informations sur ce vendeur | Contacter le vendeur

Acheter neuf
EUR 125,70
Autre devise

Ajouter au panier

Frais de port : Gratuit
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

2.

Pere Ara; Martin Mathieu
Edité par Springer (2002)
ISBN 10 : 1852332379 ISBN 13 : 9781852332372
Neuf Couverture rigide Quantité disponible : 1
Vendeur
Ergodebooks
(RICHMOND, TX, Etats-Unis)
Evaluation vendeur

Description du livre Springer, 2002. Hardcover. Etat : New. N° de réf. du vendeur SONG1852332379

Plus d'informations sur ce vendeur | Contacter le vendeur

Acheter neuf
EUR 127,23
Autre devise

Ajouter au panier

Frais de port : EUR 2,69
Vers Etats-Unis
Destinations, frais et délais

3.

Pere Ara
Edité par Springer (2002)
ISBN 10 : 1852332379 ISBN 13 : 9781852332372
Neuf Quantité disponible : > 20
impression à la demande
Vendeur
Paperbackshop-US
(Wood Dale, IL, Etats-Unis)
Evaluation vendeur

Description du livre Springer, 2002. HRD. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur IQ-9781852332372

Plus d'informations sur ce vendeur | Contacter le vendeur

Acheter neuf
EUR 130,29
Autre devise

Ajouter au panier

Frais de port : Gratuit
Vers Etats-Unis
Destinations, frais et délais

4.

Ara, Pere
Edité par Springer (2017)
ISBN 10 : 1852332379 ISBN 13 : 9781852332372
Neuf Paperback Quantité disponible : 10
impression à la demande
Vendeur
Ria Christie Collections
(Uxbridge, Royaume-Uni)
Evaluation vendeur

Description du livre Springer, 2017. Paperback. Etat : New. PRINT ON DEMAND Book; New; Publication Year 2017; Fast Shipping from the UK. No. book. N° de réf. du vendeur ria9781852332372_lsuk

Plus d'informations sur ce vendeur | Contacter le vendeur

Acheter neuf
EUR 133,12
Autre devise

Ajouter au panier

Frais de port : EUR 3,33
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

5.

Pere Ara
Edité par Springer (2002)
ISBN 10 : 1852332379 ISBN 13 : 9781852332372
Neuf Quantité disponible : > 20
impression à la demande
Vendeur
Books2Anywhere
(Fairford, GLOS, Royaume-Uni)
Evaluation vendeur

Description du livre Springer, 2002. HRD. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur IQ-9781852332372

Plus d'informations sur ce vendeur | Contacter le vendeur

Acheter neuf
EUR 125,71
Autre devise

Ajouter au panier

Frais de port : EUR 16,68
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

6.

Pere Ara, Martin Mathieu
Edité par Springer (2002)
ISBN 10 : 1852332379 ISBN 13 : 9781852332372
Neuf Couverture rigide Quantité disponible : 1
Vendeur
Ergodebooks
(RICHMOND, TX, Etats-Unis)
Evaluation vendeur

Description du livre Springer, 2002. Hardcover. Etat : New. 2003. N° de réf. du vendeur DADAX1852332379

Plus d'informations sur ce vendeur | Contacter le vendeur

Acheter neuf
EUR 144,98
Autre devise

Ajouter au panier

Frais de port : EUR 2,69
Vers Etats-Unis
Destinations, frais et délais

7.

Pere Ara, Martin Mathieu
Edité par Springer London Ltd, United Kingdom (2002)
ISBN 10 : 1852332379 ISBN 13 : 9781852332372
Neuf Couverture rigide Quantité disponible : 10
Vendeur
Book Depository International
(London, Royaume-Uni)
Evaluation vendeur

Description du livre Springer London Ltd, United Kingdom, 2002. Hardback. Etat : New. 2003 ed. Language: English. Brand new Book. Many problems in operator theory lead to the consideration ofoperator equa tions, either directly or via some reformulation. More often than not, how ever, the underlying space is too 'small' to contain solutions of these equa tions and thus it has to be 'enlarged' in some way. The Berberian-Quigley enlargement of a Banach space, which allows one to convert approximate into genuine eigenvectors, serves as a classical example. In the theory of operator algebras, a C*-algebra A that turns out to be small in this sense tradition ally is enlarged to its (universal) enveloping von Neumann algebra A". This works well since von Neumann algebras are in many respects richer and, from the Banach space point of view, A" is nothing other than the second dual space of A. Among the numerous fruitful applications of this principle is the well-known Kadison-Sakai theorem ensuring that every derivation 8 on a C*-algebra A becomes inner in A", though 8 may not be inner in A. The transition from A to A" however is not an algebraic one (and cannot be since it is well known that the property of being a von Neumann algebra cannot be described purely algebraically). Hence, ifthe C*-algebra A is small in an algebraic sense, say simple, it may be inappropriate to move on to A". In such a situation, A is typically enlarged by its multiplier algebra M(A). N° de réf. du vendeur BZV9781852332372

Plus d'informations sur ce vendeur | Contacter le vendeur

Acheter neuf
EUR 149,27
Autre devise

Ajouter au panier

Frais de port : Gratuit
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

8.

Pere Ara, Martin Mathieu
Edité par Springer London Ltd, United Kingdom (2002)
ISBN 10 : 1852332379 ISBN 13 : 9781852332372
Neuf Couverture rigide Quantité disponible : 10
Vendeur
The Book Depository
(London, Royaume-Uni)
Evaluation vendeur

Description du livre Springer London Ltd, United Kingdom, 2002. Hardback. Etat : New. 2003 ed. Language: English. Brand new Book. Many problems in operator theory lead to the consideration ofoperator equa tions, either directly or via some reformulation. More often than not, how ever, the underlying space is too 'small' to contain solutions of these equa tions and thus it has to be 'enlarged' in some way. The Berberian-Quigley enlargement of a Banach space, which allows one to convert approximate into genuine eigenvectors, serves as a classical example. In the theory of operator algebras, a C*-algebra A that turns out to be small in this sense tradition ally is enlarged to its (universal) enveloping von Neumann algebra A". This works well since von Neumann algebras are in many respects richer and, from the Banach space point of view, A" is nothing other than the second dual space of A. Among the numerous fruitful applications of this principle is the well-known Kadison-Sakai theorem ensuring that every derivation 8 on a C*-algebra A becomes inner in A", though 8 may not be inner in A. The transition from A to A" however is not an algebraic one (and cannot be since it is well known that the property of being a von Neumann algebra cannot be described purely algebraically). Hence, ifthe C*-algebra A is small in an algebraic sense, say simple, it may be inappropriate to move on to A". In such a situation, A is typically enlarged by its multiplier algebra M(A). N° de réf. du vendeur APC9781852332372

Plus d'informations sur ce vendeur | Contacter le vendeur

Acheter neuf
EUR 154,82
Autre devise

Ajouter au panier

Frais de port : Gratuit
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais