Vendeur : Zubal-Books, Since 1961, Cleveland, OH, Etats-Unis
EUR 43,69
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : Very Good. *Price HAS BEEN REDUCED by 10% until Monday, Nov. 3 (weekend SALE item)* 410 pp., Paperback, spine lightly faded, previous owner's name to title page else very good. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country.
Vendeur : Universitätsbuchhandlung Herta Hold GmbH, Berlin, Allemagne
EUR 23
Quantité disponible : 1 disponible(s)
Ajouter au panierX, 339 p. Softcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Lecture Notes in Statistics. 217. Sprache: Englisch.
Edité par Birkhauser Verlag AG, Basel, 2024
ISBN 10 : 3031603389 ISBN 13 : 9783031603389
Langue: anglais
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
EUR 120,25
Quantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : new. Hardcover. This monograph explores a set of statistical and machine learning tools that can be effectively utilized for applied data analysis in the context of electricity load forecasting. Drawing on their substantial research and experience with forecasting electricity demand in industrial settings, the authors guide readers through several modern forecasting methods and tools from both industrial and applied perspectives generalized additive models (GAMs), probabilistic GAMs, functional time series and wavelets, random forests, aggregation of experts, and mixed effects models. A collection of case studies based on sizable high-resolution datasets, together with relevant R packages, then illustrate the implementation of these techniques. Five real datasets at three different levels of aggregation (nation-wide, region-wide, or individual) from four different countries (UK, France, Ireland, and the USA) are utilized to study five problems: short-term point-wise forecasting, selection of relevant variables for prediction, construction of prediction bands, peak demand prediction, and use of individual consumer data.This text is intended for practitioners, researchers, and post-graduate students working on electricity load forecasting; it may also be of interest to applied academics or scientists wanting to learn about cutting-edge forecasting tools for application in other areas. Readers are assumed to be familiar with standard statistical concepts such as random variables, probability density functions, and expected values, and to possess some minimal modeling experience. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 120,43
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New.
EUR 16,45
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : Gut. Zustand: Gut | Sprache: Englisch | Produktart: Bücher.
EUR 16,45
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 128,49
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. 2024th edition NO-PA16APR2015-KAP.
Edité par Springer, Berlin|Springer International Publishing|Birkhäuser, 2024
ISBN 10 : 3031603389 ISBN 13 : 9783031603389
Langue: anglais
Vendeur : moluna, Greven, Allemagne
EUR 79,10
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 140,23
Quantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : Brand New. 240 pages. 9.25x6.10x9.49 inches. In Stock.
Edité par Springer International Publishing, Springer International Publishing Aug 2024, 2024
ISBN 10 : 3031603389 ISBN 13 : 9783031603389
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 90,94
Quantité disponible : 2 disponible(s)
Ajouter au panierBuch. Etat : Neu. Neuware -This monograph explores a set of statistical and machine learning tools that can be effectively utilized for applied data analysis in the context of electricity load forecasting. Drawing on their substantial research and experience with forecasting electricity demand in industrial settings, the authors guide readers through several modern forecasting methods and tools from both industrial and applied perspectives ¿ generalized additive models (GAMs), probabilistic GAMs, functional time series and wavelets, random forests, aggregation of experts, and mixed effects models. A collection of case studies based on sizable high-resolution datasets, together with relevant R packages, then illustrate the implementation of these techniques. Five real datasets at three different levels of aggregation (nation-wide, region-wide, or individual) from four different countries (UK, France, Ireland, and the USA) are utilized to study five problems: short-term point-wise forecasting, selection of relevant variables for prediction, construction of prediction bands, peak demand prediction, and use of individual consumer data.This text is intended for practitioners, researchers, and post-graduate students working on electricity load forecasting; it may also be of interest to applied academics or scientists wanting to learn about cutting-edge forecasting tools for application in other areas. Readers are assumed to be familiar with standard statistical concepts such as random variables, probability density functions, and expected values, and to possess some minimal modeling experience.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 244 pp. Englisch.
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 90,94
Quantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This monograph explores a set of statistical and machine learning tools that can be effectively utilized for applied data analysis in the context of electricity load forecasting. Drawing on their substantial research and experience with forecasting electricity demand in industrial settings, the authors guide readers through several modern forecasting methods and tools from both industrial and applied perspectives - generalized additive models (GAMs), probabilistic GAMs, functional time series and wavelets, random forests, aggregation of experts, and mixed effects models. A collection of case studies based on sizable high-resolution datasets, together with relevant R packages, then illustrate the implementation of these techniques. Five real datasets at three different levels of aggregation (nation-wide, region-wide, or individual) from four different countries (UK, France, Ireland, and the USA) are utilized to study five problems: short-term point-wise forecasting, selection of relevant variables for prediction, construction of prediction bands, peak demand prediction, and use of individual consumer data.This text is intended for practitioners, researchers, and post-graduate students working on electricity load forecasting; it may also be of interest to applied academics or scientists wanting to learn about cutting-edge forecasting tools for application in other areas. Readers are assumed to be familiar with standard statistical concepts such as random variables, probability density functions, and expected values, and to possess some minimal modeling experience.
Edité par Springer International Publishing, Springer International Publishing, 2024
ISBN 10 : 3031603389 ISBN 13 : 9783031603389
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 90,94
Quantité disponible : 1 disponible(s)
Ajouter au panierBuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This monograph explores a set of statistical and machine learning tools that can be effectively utilized for applied data analysis in the context of electricity load forecasting. Drawing on their substantial research and experience with forecasting electricity demand in industrial settings, the authors guide readers through several modern forecasting methods and tools from both industrial and applied perspectives - generalized additive models (GAMs), probabilistic GAMs, functional time series and wavelets, random forests, aggregation of experts, and mixed effects models. A collection of case studies based on sizable high-resolution datasets, together with relevant R packages, then illustrate the implementation of these techniques. Five real datasets at three different levels of aggregation (nation-wide, region-wide, or individual) from four different countries (UK, France, Ireland, and the USA) are utilized to study five problems: short-term point-wise forecasting, selection of relevant variables for prediction, construction of prediction bands, peak demand prediction, and use of individual consumer data.This text is intended for practitioners, researchers, and post-graduate students working on electricity load forecasting; it may also be of interest to applied academics or scientists wanting to learn about cutting-edge forecasting tools for application in other areas. Readers are assumed to be familiar with standard statistical concepts such as random variables, probability density functions, and expected values, and to possess some minimal modeling experience.
EUR 157,81
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. pp. 420.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 158,58
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 162,67
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
EUR 104,90
Quantité disponible : 5 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Wavelets and Statistics | Anestis Antoniadis (u. a.) | Taschenbuch | vi | Englisch | 1995 | Springer | EAN 9780387945644 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 206,94
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. pp. 339.
Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande
EUR 195,57
Quantité disponible : 15 disponible(s)
Ajouter au panierEtat : New. Editor(s): Antoniadis, Anestis; Poggi, Jean-Michel; Brossat, Xavier. Series: Lecture Notes in Statistics. Num Pages: 349 pages, 56 black & white illustrations, 49 colour illustrations, biography. BIC Classification: PBT; PBWH; UYAM. Category: (P) Professional & Vocational. Dimension: 235 x 155 x 19. Weight in Grams: 495. . 2015. Paperback. . . . .
Edité par Springer International Publishing, 2015
ISBN 10 : 3319187317 ISBN 13 : 9783319187310
Langue: anglais
Vendeur : preigu, Osnabrück, Allemagne
EUR 141,30
Quantité disponible : 5 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Modeling and Stochastic Learning for Forecasting in High Dimensions | Anestis Antoniadis (u. a.) | Taschenbuch | x | Englisch | 2015 | Springer International Publishing | EAN 9783319187310 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
EUR 186,95
Quantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : Like New. Like New. book.
Edité par Springer International Publishing, Springer International Publishing Jun 2015, 2015
ISBN 10 : 3319187317 ISBN 13 : 9783319187310
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 160,49
Quantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Neuware -The chapters in this volume stress the need for advances in theoretical understanding to go hand-in-hand with the widespread practical application of forecasting in industry. Forecasting and time series prediction have enjoyed considerable attention over the last few decades, fostered by impressive advances in observational capabilities and measurement procedures. On June 5-7, 2013, an international Workshop on Industry Practices for Forecasting was held in Paris, France, organized and supported by the OSIRIS Department of Electricité de France Research and Development Division. In keeping with tradition, both theoretical statistical results and practical contributions on this active field of statistical research and on forecasting issues in a rapidly evolving industrial environment are presented. The volume reflects the broad spectrum of the conference, including 16 articles contributed by specialists in various areas. The material compiled is broad in scope and ranges from new findings on forecasting in industry and in time series, on nonparametric and functional methods and on on-line machine learning for forecasting, to the latest developments in tools for high dimension and complex data analysis.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 352 pp. Englisch.
Edité par Springer International Publishing, Springer International Publishing, 2015
ISBN 10 : 3319187317 ISBN 13 : 9783319187310
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 160,49
Quantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - The chapters in this volume stress the need for advances in theoretical understanding to go hand-in-hand with the widespread practical application of forecasting in industry. Forecasting and time series prediction have enjoyed considerable attention over the last few decades, fostered by impressive advances in observational capabilities and measurement procedures. On June 5-7, 2013, an international Workshop on Industry Practices for Forecasting was held in Paris, France, organized and supported by the OSIRIS Department of Electricité de France Research and Development Division. In keeping with tradition, both theoretical statistical results and practical contributions on this active field of statistical research and on forecasting issues in a rapidly evolving industrial environment are presented. The volume reflects the broad spectrum of the conference, including 16 articles contributed by specialists in various areas. The material compiled is broad in scope and ranges from new findings on forecasting in industry and in time series, on nonparametric and functional methods and on on-line machine learning for forecasting, to the latest developments in tools for high dimension and complex data analysis.
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 234,21
Quantité disponible : 2 disponible(s)
Ajouter au panierPaperback. Etat : Brand New. 2015 edition. 339 pages. 8.75x6.00x0.75 inches. In Stock.
Vendeur : Kennys Bookstore, Olney, MD, Etats-Unis
EUR 246,48
Quantité disponible : 15 disponible(s)
Ajouter au panierEtat : New. Editor(s): Antoniadis, Anestis; Poggi, Jean-Michel; Brossat, Xavier. Series: Lecture Notes in Statistics. Num Pages: 349 pages, 56 black & white illustrations, 49 colour illustrations, biography. BIC Classification: PBT; PBWH; UYAM. Category: (P) Professional & Vocational. Dimension: 235 x 155 x 19. Weight in Grams: 495. . 2015. Paperback. . . . . Books ship from the US and Ireland.
Vendeur : ChouetteCoop, Kervignac, France
EUR 30,74
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : Used: Good. Occasion - Bon Etat - Tranche tachée ou marquée - Régression non linéaire et applications (1992) - Grand Format.
Vendeur : Brook Bookstore On Demand, Napoli, NA, Italie
EUR 74,24
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : new. Questo è un articolo print on demand.
Edité par Springer, Berlin, Springer International Publishing, Birkhäuser, 2025
ISBN 10 : 3031603419 ISBN 13 : 9783031603419
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 90,94
Quantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This monograph explores a set of statistical and machine learning tools that can be effectively utilized for applied data analysis in the context of electricity load forecasting. Drawing on their substantial research and experience with forecasting electricity demand in industrial settings, the authors guide readers through several modern forecasting methods and tools from both industrial and applied perspectives - generalized additive models (GAMs), probabilistic GAMs, functional time series and wavelets, random forests, aggregation of experts, and mixed effects models. A collection of case studies based on sizable high-resolution datasets, together with relevant R packages, then illustrate the implementation of these techniques. Five real datasets at three different levels of aggregation (nation-wide, region-wide, or individual) from four different countries (UK, France, Ireland, and the USA) are utilized to study five problems: short-term point-wise forecasting, selection of relevant variables for prediction, construction of prediction bands, peak demand prediction, and use of individual consumer data.This text is intended for practitioners, researchers, and post-graduate students working on electricity load forecasting; it may also be of interest to applied academics or scientists wanting to learn about cutting-edge forecasting tools for application in other areas. Readers are assumed to be familiar with standard statistical concepts such as random variables, probability density functions, and expected values, and to possess some minimal modeling experience. 231 pp. Englisch.
Edité par Springer International Publishing, Springer International Publishing Aug 2024, 2024
ISBN 10 : 3031603389 ISBN 13 : 9783031603389
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 90,94
Quantité disponible : 2 disponible(s)
Ajouter au panierBuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This monograph explores a set of statistical and machine learning tools that can be effectively utilized for applied data analysis in the context of electricity load forecasting. Drawing on their substantial research and experience with forecasting electricity demand in industrial settings, the authors guide readers through several modern forecasting methods and tools from both industrial and applied perspectives - generalized additive models (GAMs), probabilistic GAMs, functional time series and wavelets, random forests, aggregation of experts, and mixed effects models. A collection of case studies based on sizable high-resolution datasets, together with relevant R packages, then illustrate the implementation of these techniques. Five real datasets at three different levels of aggregation (nation-wide, region-wide, or individual) from four different countries (UK, France, Ireland, and the USA) are utilized to study five problems: short-term point-wise forecasting, selection of relevant variables for prediction, construction of prediction bands, peak demand prediction, and use of individual consumer data.This text is intended for practitioners, researchers, and post-graduate students working on electricity load forecasting; it may also be of interest to applied academics or scientists wanting to learn about cutting-edge forecasting tools for application in other areas. Readers are assumed to be familiar with standard statistical concepts such as random variables, probability density functions, and expected values, and to possess some minimal modeling experience. 244 pp. Englisch.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 126,08
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 134,56
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand.