Edité par Morgan & Claypool Publishers, 2019
ISBN 10 : 1681735199 ISBN 13 : 9781681735191
Langue: anglais
Vendeur : suffolkbooks, Center moriches, NY, Etats-Unis
EUR 17,73
Quantité disponible : 2 disponible(s)
Ajouter au panierpaperback. Etat : Very Good. Fast Shipping - Safe and Secure 7 days a week!
EUR 56,22
Quantité disponible : 15 disponible(s)
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 55,94
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In English.
EUR 69,27
Quantité disponible : 15 disponible(s)
Ajouter au panierEtat : New.
Edité par Springer International Publishing AG, CH, 2019
ISBN 10 : 3031007867 ISBN 13 : 9783031007866
Langue: anglais
Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni
EUR 72,32
Quantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : New. Unstructured text, as one of the most important data forms, plays a crucial role in data-driven decision making in domains ranging from social networking and information retrieval to scientific research and healthcare informatics. In many emerging applications, people's information need from text data is becoming multidimensional-they demand useful insights along multiple aspects from a text corpus. However, acquiring such multidimensional knowledge from massive text data remains a challenging task.This book presents data mining techniques that turn unstructured text data into multidimensional knowledge. We investigate two core questions. (1) How does one identify task-relevant text data with declarative queries in multiple dimensions? (2) How does one distill knowledge from text data in a multidimensional space? To address the above questions, we develop a text cube framework. First, we develop a cube construction module that organizes unstructured data into a cube structure, by discovering latent multidimensional and multi-granular structure from the unstructured text corpus and allocating documents into the structure. Second, we develop a cube exploitation module that models multiple dimensions in the cube space, thereby distilling from user-selected data multidimensional knowledge. Together, these two modules constitute an integrated pipeline: leveraging the cube structure, users can perform multidimensional, multigranular data selection with declarative queries; and with cube exploitation algorithms, users can extract multidimensional patterns from the selected data for decision making.The proposed framework has two distinctive advantages when turning text data into multidimensional knowledge: flexibility and label-efficiency. First, it enables acquiring multidimensional knowledge flexibly, as the cube structure allows users to easily identify task-relevant data along multiple dimensions at varied granularities and further distill multidimensional knowledge. Second, the algorithms for cube construction and exploitation require little supervision; this makes the framework appealing for many applications where labeled data are expensive to obtain.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 55,93
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : New.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 58,86
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 76,61
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. 1st edition NO-PA16APR2015-KAP.
Edité par Springer, Berlin|Springer International Publishing|Morgan & Claypool|Springer, 2019
ISBN 10 : 3031007867 ISBN 13 : 9783031007866
Langue: anglais
Vendeur : moluna, Greven, Allemagne
EUR 61,95
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : New. Unstructured text, as one of the most important data forms, plays a crucial role in data-driven decision making in domains ranging from social networking and information retrieval to scientific research and healthcare informatics. In many emerging applicati.
Edité par Springer International Publishing AG, CH, 2019
ISBN 10 : 3031007867 ISBN 13 : 9783031007866
Langue: anglais
Vendeur : Rarewaves.com UK, London, Royaume-Uni
EUR 64,86
Quantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : New. Unstructured text, as one of the most important data forms, plays a crucial role in data-driven decision making in domains ranging from social networking and information retrieval to scientific research and healthcare informatics. In many emerging applications, people's information need from text data is becoming multidimensional-they demand useful insights along multiple aspects from a text corpus. However, acquiring such multidimensional knowledge from massive text data remains a challenging task.This book presents data mining techniques that turn unstructured text data into multidimensional knowledge. We investigate two core questions. (1) How does one identify task-relevant text data with declarative queries in multiple dimensions? (2) How does one distill knowledge from text data in a multidimensional space? To address the above questions, we develop a text cube framework. First, we develop a cube construction module that organizes unstructured data into a cube structure, by discovering latent multidimensional and multi-granular structure from the unstructured text corpus and allocating documents into the structure. Second, we develop a cube exploitation module that models multiple dimensions in the cube space, thereby distilling from user-selected data multidimensional knowledge. Together, these two modules constitute an integrated pipeline: leveraging the cube structure, users can perform multidimensional, multigranular data selection with declarative queries; and with cube exploitation algorithms, users can extract multidimensional patterns from the selected data for decision making.The proposed framework has two distinctive advantages when turning text data into multidimensional knowledge: flexibility and label-efficiency. First, it enables acquiring multidimensional knowledge flexibly, as the cube structure allows users to easily identify task-relevant data along multiple dimensions at varied granularities and further distill multidimensional knowledge. Second, the algorithms for cube construction and exploitation require little supervision; this makes the framework appealing for many applications where labeled data are expensive to obtain.
Edité par Springer-Nature New York Inc, 2019
ISBN 10 : 3031007867 ISBN 13 : 9783031007866
Langue: anglais
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 64,35
Quantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : Brand New. 9.25x7.51 inches. In Stock. This item is printed on demand.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 78,96
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 80,46
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. PRINT ON DEMAND.