Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 128,48
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 145,71
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 133,08
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 148,81
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 146,25
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 179,34
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 192,03
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. 2024th edition NO-PA16APR2015-KAP.
Vendeur : preigu, Osnabrück, Allemagne
EUR 141,90
Quantité disponible : 5 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Construct, Merge, Solve & Adapt | A Hybrid Metaheuristic for Combinatorial Optimization | Christian Blum | Taschenbuch | xvi | Englisch | 2025 | Springer | EAN 9783031601057 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Edité par Springer, Palgrave Macmillan, 2025
ISBN 10 : 303160105X ISBN 13 : 9783031601057
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 160,49
Quantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering.
Edité par Springer Nature Switzerland, Springer International Publishing, 2024
ISBN 10 : 3031601025 ISBN 13 : 9783031601026
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 160,49
Quantité disponible : 1 disponible(s)
Ajouter au panierBuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book describes a general hybrid metaheuristic for combinatorial optimization labeled Construct, Merge, Solve & Adapt (CMSA). The general idea of standard CMSA is the following one. At each iteration, a number of valid solutions to the tackled problem instance are generated in a probabilistic way. Hereby, each of these solutions is composed of a set of solution components. The components found in the generated solutions are then added to an initially empty sub-instance. Next, an exact solver is applied in order to compute the best solution of the sub-instance, which is then used to update the sub-instance provided as input for the next iteration. In this way, the power of exact solvers can be exploited for solving problem instances much too large for a standalone application of the solver.Important research lines on CMSA from recent years are covered in this book. After an introductory chapter about standard CMSA, subsequent chapters cover a self-adaptive CMSA variant as well as a variant equipped with a learning component for improving the quality of the generated solutions over time. Furthermore, on outlining the advantages of using set-covering-based integer linear programming models for sub-instance solving, the author showshow to apply CMSA to problems naturally modelled by non-binary integer linear programming models. The book concludes with a chapter on topics such as the development of a problem-agnostic CMSA and the relation between large neighborhood search and CMSA. Combinatorial optimization problems used in the book as test cases include the minimum dominating set problem, the variable-sized bin packing problem, and an electric vehicle routing problem.The book will be valuable and is intended for researchers, professionals and graduate students working in a wide range of fields, such as combinatorial optimization, algorithmics, metaheuristics, mathematical modeling, evolutionary computing, operations research, artificial intelligence, or statistics.
Edité par Springer-Nature New York Inc, 2024
ISBN 10 : 3031601025 ISBN 13 : 9783031601026
Langue: anglais
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 233,49
Quantité disponible : 2 disponible(s)
Ajouter au panierHardcover. Etat : Brand New. 208 pages. 9.25x6.10x9.21 inches. In Stock.
Vendeur : Brook Bookstore On Demand, Napoli, NA, Italie
EUR 126,26
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : new. Questo è un articolo print on demand.
Edité par Springer, Palgrave Macmillan Jun 2025, 2025
ISBN 10 : 303160105X ISBN 13 : 9783031601057
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 160,49
Quantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 208 pp. Englisch.
Edité par Springer Nature Switzerland, Springer International Publishing Jun 2024, 2024
ISBN 10 : 3031601025 ISBN 13 : 9783031601026
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 160,49
Quantité disponible : 2 disponible(s)
Ajouter au panierBuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book describes a general hybrid metaheuristic for combinatorial optimization labeled Construct, Merge, Solve & Adapt (CMSA). The general idea of standard CMSA is the following one. At each iteration, a number of valid solutions to the tackled problem instance are generated in a probabilistic way. Hereby, each of these solutions is composed of a set of solution components. The components found in the generated solutions are then added to an initially empty sub-instance. Next, an exact solver is applied in order to compute the best solution of the sub-instance, which is then used to update the sub-instance provided as input for the next iteration. In this way, the power of exact solvers can be exploited for solving problem instances much too large for a standalone application of the solver.Important research lines on CMSA from recent years are covered in this book. After an introductory chapter about standard CMSA, subsequent chapters cover a self-adaptive CMSA variant as well as a variant equipped with a learning component for improving the quality of the generated solutions over time. Furthermore, on outlining the advantages of using set-covering-based integer linear programming models for sub-instance solving, the author showshow to apply CMSA to problems naturally modelled by non-binary integer linear programming models. The book concludes with a chapter on topics such as the development of a problem-agnostic CMSA and the relation between large neighborhood search and CMSA. Combinatorial optimization problems used in the book as test cases include the minimum dominating set problem, the variable-sized bin packing problem, and an electric vehicle routing problem.The book will be valuable and is intended for researchers, professionals and graduate students working in a wide range of fields, such as combinatorial optimization, algorithmics, metaheuristics, mathematical modeling, evolutionary computing, operations research, artificial intelligence, or statistics. 208 pp. Englisch.
Edité par Springer, Berlin|Springer Nature Switzerland|Springer, 2024
ISBN 10 : 3031601025 ISBN 13 : 9783031601026
Langue: anglais
Vendeur : moluna, Greven, Allemagne
EUR 136,16
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book describes a general hybrid metaheuristic for combinatorial optimization labeled Construct, Merge, Solve & Adapt (CMSA). The general idea of standard CMSA is the following one. At each iteration, a number of valid solutions to the tackled proble.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 205,99
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand.
Vendeur : preigu, Osnabrück, Allemagne
EUR 141,90
Quantité disponible : 5 disponible(s)
Ajouter au panierBuch. Etat : Neu. Construct, Merge, Solve & Adapt | A Hybrid Metaheuristic for Combinatorial Optimization | Christian Blum | Buch | xvi | Englisch | 2024 | Springer | EAN 9783031601026 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 206,69
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. PRINT ON DEMAND.
Edité par Springer, Palgrave Macmillan Jun 2025, 2025
ISBN 10 : 303160105X ISBN 13 : 9783031601057
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 160,49
Quantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware Springer-Verlag KG, Sachsenplatz 4-6, 1201 Wien 208 pp. Englisch.
Edité par Springer Nature Switzerland, Springer International Publishing Jun 2024, 2024
ISBN 10 : 3031601025 ISBN 13 : 9783031601026
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 160,49
Quantité disponible : 1 disponible(s)
Ajouter au panierBuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book describes a general hybrid metaheuristic for combinatorial optimization labeled Construct, Merge, Solve & Adapt (CMSA). The general idea of standard CMSA is the following one. At each iteration, a number of valid solutions to the tackled problem instance are generated in a probabilistic way. Hereby, each of these solutions is composed of a set of solution components. The components found in the generated solutions are then added to an initially empty sub-instance. Next, an exact solver is applied in order to compute the best solution of the sub-instance, which is then used to update the sub-instance provided as input for the next iteration. In this way, the power of exact solvers can be exploited for solving problem instances much too large for a standalone application of the solver.Important research lines on CMSA from recent years are covered in this book. After an introductory chapter about standard CMSA, subsequent chapters cover a self-adaptive CMSA variant as well as a variant equipped with a learning component for improving the quality of the generated solutions over time. Furthermore, on outlining the advantages of using set-covering-based integer linear programming models for sub-instance solving, the author shows how to apply CMSA to problems naturally modelled by non-binary integer linear programming models. The book concludes with a chapter on topics such as the development of a problem-agnostic CMSA and the relation between large neighborhood search and CMSA. Combinatorial optimization problems used in the book as test cases include the minimum dominating set problem, the variable-sized bin packing problem, and an electric vehicle routing problem.The book will be valuable and is intended for researchers, professionals and graduate students working in a wide range of fields, such as combinatorial optimization, algorithmics, metaheuristics, mathematical modeling, evolutionary computing, operations research, artificial intelligence, or statistics.Springer-Verlag KG, Sachsenplatz 4-6, 1201 Wien 208 pp. Englisch.