Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 52,84
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par Basel, Birkhäuser Verlag, 1992
ISBN 10 : 3764327162 ISBN 13 : 9783764327163
Langue: anglais
Vendeur : Antiquariat Bookfarm, Löbnitz, Allemagne
EUR 44,10
Quantité disponible : 1 disponible(s)
Ajouter au panierHardcover. viii, 249 p. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. C-04120 3764327162 Sprache: Englisch Gewicht in Gramm: 550.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 57,79
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : Chiron Media, Wallingford, Royaume-Uni
EUR 55,98
Quantité disponible : 10 disponible(s)
Ajouter au panierPF. Etat : New.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 87,14
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : New. pp. 260.
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 78,46
Quantité disponible : 2 disponible(s)
Ajouter au panierPaperback. Etat : Brand New. 264 pages. 9.70x6.70x0.60 inches. In Stock.
EUR 90,79
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : New. pp. 260.
ISBN 10 : 0817627162 ISBN 13 : 9780817627164
Langue: anglais
Vendeur : Basi6 International, Irving, TX, Etats-Unis
EUR 66,91
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service.
ISBN 10 : 0817627162 ISBN 13 : 9780817627164
Langue: anglais
Vendeur : Romtrade Corp., STERLING HEIGHTS, MI, Etats-Unis
EUR 66,91
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 90,92
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : New. pp. 260.
Vendeur : Hay-on-Wye Booksellers, Hay-on-Wye, HEREF, Royaume-Uni
EUR 42,97
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : Good. Slight damage to the top of the spine; creased and a little disformed in shape. Elsewhere is clean, inscriptions to the front of the book but the content is fine throughout.
EUR 53,49
Quantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - A condensing (or densifying) operator is a mapping under which the image of any set is in a certain sense more compact than the set itself. The degree of noncompactness of a set is measured by means of functions called measures of noncompactness. The contractive maps and the compact maps [i.e., in this Introduction, the maps that send any bounded set into a relatively compact one; in the main text the term 'compact' will be reserved for the operators that, in addition to having this property, are continuous, i.e., in the authors' terminology, for the completely continuous operators] are condensing. For contractive maps one can take as measure of noncompactness the diameter of a set, while for compact maps can take the indicator function of a family of non-relatively com pact sets. The operators of the form F( x) = G( x, x), where G is contractive in the first argument and compact in the second, are also condensing with respect to some natural measures of noncompactness. The linear condensing operators are characterized by the fact that almost all of their spectrum is included in a disc of radius smaller than one. The examples given above show that condensing operators are a sufficiently typical phenomenon in various applications of functional analysis, for example, in the theory of differential and integral equations. As is turns out, the condensing operators have properties similar to the compact ones.
EUR 50,95
Quantité disponible : 5 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Measures of Noncompactness and Condensing Operators | Akhmerov (u. a.) | Taschenbuch | VIII | Englisch | 2014 | Springer | EAN 9783034857291 | Verantwortliche Person für die EU: Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
EUR 119,56
Quantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : Like New. LIKE NEW. SHIPS FROM MULTIPLE LOCATIONS. book.
EUR 40,94
Quantité disponible : 2 disponible(s)
Ajouter au panierEtat : Sehr gut. Zustand: Sehr gut | Sprache: Russisch | Produktart: Bücher.
ISBN 10 : 0817627162 ISBN 13 : 9780817627164
Langue: anglais
Vendeur : ALLBOOKS1, Direk, SA, Australie
EUR 74,49
Quantité disponible : 1 disponible(s)
Ajouter au panierBrand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address.
Edité par Birkhäuser, Springer Aug 2014, 2014
ISBN 10 : 3034857292 ISBN 13 : 9783034857291
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 53,49
Quantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -A condensing (or densifying) operator is a mapping under which the image of any set is in a certain sense more compact than the set itself. The degree of noncompactness of a set is measured by means of functions called measures of noncompactness. The contractive maps and the compact maps [i.e., in this Introduction, the maps that send any bounded set into a relatively compact one; in the main text the term 'compact' will be reserved for the operators that, in addition to having this property, are continuous, i.e., in the authors' terminology, for the completely continuous operators] are condensing. For contractive maps one can take as measure of noncompactness the diameter of a set, while for compact maps can take the indicator function of a family of non-relatively com pact sets. The operators of the form F( x) = G( x, x), where G is contractive in the first argument and compact in the second, are also condensing with respect to some natural measures of noncompactness. The linear condensing operators are characterized by the fact that almost all of their spectrum is included in a disc of radius smaller than one. The examples given above show that condensing operators are a sufficiently typical phenomenon in various applications of functional analysis, for example, in the theory of differential and integral equations. As is turns out, the condensing operators have properties similar to the compact ones. 264 pp. Englisch.
Vendeur : moluna, Greven, Allemagne
EUR 48,37
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. A condensing (or densifying) operator is a mapping under which the image of any set is in a certain sense more compact than the set itself. The degree of noncompactness of a set is measured by means of functions called measures of noncompactness. The contra.
Edité par Birkhäuser Basel, Springer Basel Aug 2014, 2014
ISBN 10 : 3034857292 ISBN 13 : 9783034857291
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 53,49
Quantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -A condensing (or densifying) operator is a mapping under which the image of any set is in a certain sense more compact than the set itself. The degree of noncompactness of a set is measured by means of functions called measures of noncompactness. The contractive maps and the compact maps [i.e., in this Introduction, the maps that send any bounded set into a relatively compact one; in the main text the term 'compact' will be reserved for the operators that, in addition to having this property, are continuous, i.e., in the authors' terminology, for the completely continuous operators] are condensing. For contractive maps one can take as measure of noncompactness the diameter of a set, while for compact maps can take the indicator function of a family of non-relatively com pact sets. The operators of the form F( x) = G( x, x), where G is contractive in the first argument and compact in the second, are also condensing with respect to some natural measures of noncompactness. The linear condensing operators are characterized by the fact that almost all of their spectrum is included in a disc of radius smaller than one. The examples given above show that condensing operators are a sufficiently typical phenomenon in various applications of functional analysis, for example, in the theory of differential and integral equations. As is turns out, the condensing operators have properties similar to the compact ones.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 264 pp. Englisch.