L'édition de cet ISBN n'est malheureusement plus disponible.
Graduate students and researchers in combinatorics and matroid theory as well as computer scientists, graph theorists and scientific libraries may find this book useful. Matroids were introduced in 1935 as an abstract generalization of graphs and matrices. Since the mid-1950s, much progress has been made, and there now exists a large collection of significant matroid theorems. Matroid decomposition covers the area of the theory dealing with decomposition and composition of matroids. In order to make the subject more accessible to those without a background in matroid theory, the book starts with introductory material. The exposition is clear and simple, making the main results easily understandable.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Matroids, first defined in 1935, are an abstract generalization of graphs and matrices. By now, there is a large body of matroid theory. The book covers the part of the theory dealing with composition and decomposition of matroids. The book is a revised version of the original publication of 1992. It does not assume any prior knowledge of matroid theory. Indeed, for the reader unfamiliar with matroid theory, the book may serve as an easy and intuitive introduction to that beautiful part of combinatorics. For the expert, the book is intended to provide a pleasant tour over familiar terrain.
K. Truemper obtained in 1973 a PhD in Operations Research at Case Western University. Since then he has been on the faculty of the University of Texas at Dallas and currently is Professor Emeritus of Computer Science.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
(Aucun exemplaire disponible)
Chercher: Créez une demandeVous ne trouvez pas le livre que vous recherchez ? Nous allons poursuivre vos recherches. Si l'un de nos libraires l'ajoute aux offres sur AbeBooks, nous vous le ferons savoir !
Créez une demande