Flexible Bayesian Regression Modeling is a step-by-step guide to the Bayesian revolution in regression modeling, for use in advanced econometric and statistical analysis where datasets are characterized by complexity, multiplicity, and large sample sizes, necessitating the need for considerable flexibility in modeling techniques. It reviews three forms of flexibility: methods which provide flexibility in their error distribution; methods which model non-central parts of the distribution (such as quantile regression); and finally models that allow the mean function to be flexible (such as spline models). Each chapter discusses the key aspects of fitting a regression model. R programs accompany the methods.
This book is particularly relevant to non-specialist practitioners with intermediate mathematical training seeking to apply Bayesian approaches in economics, biology, finance, engineering and medicine.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Dr. Yanan Fan is Associate Professor of statistics at the University of New South Wales, Sydney, Australia. Her research focuses on the development of efficient Bayesian computational methods, approximate inferences and nonparametric regression methods.
Dr. David Nott is Associate Professor of Statistics at the National University of Singapore. His research focuses on Bayesian likelihood-free inference and other approximate inference methods, and on complex Bayesian nonparametric models.
Dr. Michael Stanley Smith is Professor of Management (Econometrics) at Melbourne Business School, University of Melbourne, as well as Honorary Professor of Business Analytics at the University of Sydney. Michael's research is in developing Bayesian models and methods, and applying them to problems that arise in business, economics and elsewhere.
Dr. Jean-Luc Dortet-Bernadet is maître de conférences at the Université de Strasbourg, France, and member of the Institut de Recherche Mathématique Avancée (IRMA). His research focuses mainly on the development of some Bayesian methods, nonparametric methods and on the study of dependence.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : BooksRun, Philadelphia, PA, Etats-Unis
Paperback. Etat : Very Good. 1. It's a well-cared-for item that has seen limited use. The item may show minor signs of wear. All the text is legible, with all pages included. It may have slight markings and/or highlighting. N° de réf. du vendeur 012815862X-8-1
Quantité disponible : 1 disponible(s)
Vendeur : Brook Bookstore On Demand, Napoli, NA, Italie
Etat : new. Questo è un articolo print on demand. N° de réf. du vendeur 91af243f56ad4040585ffd2c24a2ad38
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 37583211-n
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 37583211
Quantité disponible : Plus de 20 disponibles
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 352 pages. 9.25x6.25x0.75 inches. In Stock. This item is printed on demand. N° de réf. du vendeur __012815862X
Quantité disponible : 2 disponible(s)
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Paperback / softback. Etat : New. New copy - Usually dispatched within 4 working days. N° de réf. du vendeur B9780128158623
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9780128158623_new
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 37583211-n
Quantité disponible : Plus de 20 disponibles
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Flexible Bayesian Regression Modeling is a step-by-step guide to the Bayesian revolution in regression modeling, for use in advanced econometric and statistical analysis where datasets are characterized by complexity, multiplicity, and large sampl. N° de réf. du vendeur 273820911
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 37583211
Quantité disponible : Plus de 20 disponibles