Reservoir Simulation: Machine Learning and Modeling helps the engineer step into the current and most popular advances in reservoir simulation, learning from current experiments and speeding up potential collaboration opportunities in research and technology. This reference explains common terminology, concepts, and equations through multiple figures and rigorous derivations, better preparing the engineer for the next step forward in a modeling project and avoid repeating existing progress. Well-designed exercises, case studies and numerical examples give the engineer a faster start on advancing their own cases. Both computational methods and engineering cases are explained, bridging the opportunities between computational science and petroleum engineering. This book delivers a critical reference for today's petroleum and reservoir engineer to optimize more complex developments.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Shuyu Sun is currently the Director of the Computational Transport Phenomena Laboratory (CTPL) at King Abdullah University of Science and Technology (KAUST) and a Co-Director of the Center for Subsurface Imaging and Fluid Modeling consortium (CSIM) at KAUST. He obtained his Ph.D. degree in computational and applied mathematics from The University of Texas at Austin. His research includes the modelling and simulation of porous media flow at Darcy scales, pore scales and molecular scales. Professor Sun has published about 400 articles, including 220+ refereed journal papers
Tao Zhang is currently a PhD candidate at King Abdullah University of Science and Technology (KAUST), Earth Science and Engineering, researching computational fluid dynamics and thermodynamics in reservoirs, as well as geological data analysis. Tao's research specialties also include deep learning and AI in reservoir simulation. He earned a master's and a Bachelor of Engineering in storage and transportation of oil and gas, both from China University of Petroleum in Beijing
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Brook Bookstore On Demand, Napoli, NA, Italie
Etat : new. Questo è un articolo print on demand. N° de réf. du vendeur 3cc3f88c35044c2d7b1149858795b12b
Quantité disponible : Plus de 20 disponibles
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. pp. 340. N° de réf. du vendeur 379263729
Quantité disponible : 3 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 340 1st Edition. N° de réf. du vendeur 26384607534
Quantité disponible : 3 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 41454542-n
Quantité disponible : Plus de 20 disponibles
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. pp. 340. N° de réf. du vendeur 18384607524
Quantité disponible : 3 disponible(s)
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Paperback / softback. Etat : New. New copy - Usually dispatched within 4 working days. N° de réf. du vendeur B9780128209578
Quantité disponible : Plus de 20 disponibles
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 320 pages. 9.00x6.00x0.75 inches. In Stock. This item is printed on demand. N° de réf. du vendeur __0128209577
Quantité disponible : 2 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9780128209578_new
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 41454542
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 41454542-n
Quantité disponible : Plus de 20 disponibles