Supervised Machine Learning in Wind Forecasting and Ramp Event Prediction provides an up-to- date overview on the broad area of wind generation and forecasting, with a focus on the role and need of Machine Learning in this emerging field of knowledge. Various regression models and signal decomposition techniques are presented and analyzed, including least-square, twin support and random forest regression, all with supervised Machine Learning. The specific topics of ramp event prediction and wake interactions are addressed in this book, along with forecasted performance.
Wind speed forecasting has become an essential component to ensure power system security, reliability and safe operation, making this reference useful for all researchers and professionals researching renewable energy, wind energy forecasting and generation.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Harsh S. Dhiman is a research scholar in Department of Electrical Engineering from Institute of Infrastructure Technology Research and Management (IITRAM), Ahmedabad, India. He obtained his Master's degree in Electrical Power Engineering from Faculty of Technology & Engineering, The Maharaja Sayajirao University of Baroda, Vadodara, India in 2016 and B. Tech in Electrical Engineering from Institute of Technology, Nirma University, Ahmedabad, India in 2014. His current research interests include Hybrid operation of wind farms, Hybrid wind forecasting techniques and Wake management in wind farms.
Dipankar Deb completed his Ph.D. from University of Virginia, Charlottesville under the supervision of Prof.Gang Tao, IEEE Fellow and Professor in the department of ECE in 2007. In 2017, he was elected to be a IEEE Senior Member. He has served as a Lead Engineer at GE Global Research Bengaluru (2012-15) and as an Assistant Professor in EE, IIT Guwahati 2010-12. Presently, he is a Professor in Electrical Engineering at Institute of Infrastructure Technology Research and Management (IITRAM), Ahmedabad. His research interests include Control theory, Stability analysis and Renewable energy systems.
Valentina Emilia Balas is currently a Full Professor in the Department of Automatics and Applied Software at the Faculty of Engineering, "Aurel Vlaicu" University of Arad, Romania. She holds a PhD cum Laude in Applied Electronics and Telecommunications from the Polytechnic University of Timisoara. Dr. Balas is the author of more than 350 research papers. She is the Editor-in-Chief of the 'International Journal of Advanced Intelligence Paradigms' and the 'International Journal of Computational Systems Engineering', an editorial board member for several other national and international publications, and an expert evaluator for national and international projects and PhD theses.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Brook Bookstore On Demand, Napoli, NA, Italie
Etat : new. Questo è un articolo print on demand. N° de réf. du vendeur 31f122e0cb57bb356b37ca4f4e0c0cb3
Quantité disponible : Plus de 20 disponibles
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 191 pages. 8.75x6.00x0.75 inches. In Stock. This item is printed on demand. N° de réf. du vendeur __0128213531
Quantité disponible : 2 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 38704455-n
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Supervised Machine Learning in Wind Forecasting and Ramp Event Prediction provides an up-to- date overview on the broad area of wind generation and forecasting, with a focus on the role and need of Machine Learning in this emerging field of knowledge. Various regression models and signal decomposition techniques are presented and analyzed, including least-square, twin support and random forest regression, all with supervised Machine Learning. The specific topics of ramp event prediction and wake interactions are addressed in this book, along with forecasted performance. Wind speed forecasting has become an essential component to ensure power system security, reliability and safe operation, making this reference useful for all researchers and professionals researching renewable energy, wind energy forecasting and generation. Englisch. N° de réf. du vendeur 9780128213537
Quantité disponible : 2 disponible(s)
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Paperback / softback. Etat : New. New copy - Usually dispatched within 4 working days. N° de réf. du vendeur B9780128213537
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 38704455-n
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 38704455
Quantité disponible : 1 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9780128213537_new
Quantité disponible : Plus de 20 disponibles
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Supervised Machine Learning in Wind Forecasting and Ramp Event Prediction provides an up-to- date overview on the broad area of wind generation and forecasting, with a focus on the role and need of Machine Learning in this emerging field of knowle. N° de réf. du vendeur 320002115
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 38704455
Quantité disponible : Plus de 20 disponibles