Articles liés à Trends in Deep Learning Methodologies: Algorithms,...

Trends in Deep Learning Methodologies: Algorithms, Applications, and Systems - Couverture souple

 
9780128222263: Trends in Deep Learning Methodologies: Algorithms, Applications, and Systems

Synopsis

Trends in Deep Learning Methodologies: Algorithms, Applications, and Systems covers deep learning approaches such as neural networks, deep belief networks, recurrent neural networks, convolutional neural networks, deep auto-encoder, and deep generative networks, which have emerged as powerful computational models. Chapters elaborate on these models which have shown significant success in dealing with massive data for a large number of applications, given their capacity to extract complex hidden features and learn efficient representation in unsupervised settings. Chapters investigate deep learning-based algorithms in a variety of application, including biomedical and health informatics, computer vision, image processing, and more.

In recent years, many powerful algorithms have been developed for matching patterns in data and making predictions about future events. The major advantage of deep learning is to process big data analytics for better analysis and self-adaptive algorithms to handle more data. Deep learning methods can deal with multiple levels of representation in which the system learns to abstract higher level representations of raw data. Earlier, it was a common requirement to have a domain expert to develop a specific model for each specific application, however, recent advancements in representation learning algorithms allow researchers across various subject domains to automatically learn the patterns and representation of the given data for the development of specific models.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos des auteurs

Vincenzo Piuri received his Ph.D. in computer engineering at Politecnico di Milano, Italy (1989). He is a Full Professor in computer engineering at the University of Milan, Italy (since 2000), where he was also Department Chair (2007-2012). He was previously Associate Professor at Politecnico di Milano, Italy and Visiting Professor at the University of Texas at Austin and at George Mason University, USA.
His main research interests include: artificial intelligence, computational intelligence, intelligent systems, machine learning, pattern analysis and recognition, signal and image processing, biometrics, intelligent measurement systems, industrial applications, digital processing architectures, fault tolerance, dependability, and cloud computing infrastructures. Original results have been published in more than 400 papers in international journals, proceedings of international conferences, books, and book chapters.
He is Fellow of the IEEE, Distinguished Scientist of ACM, and Senior Member of INNS. He has been IEEE Vice President for Technical Activities (2015), IEEE Director, President of the IEEE Computational Intelligence Society, Vice President for Education of the IEEE Biometrics Council, Vice President for Publications of the IEEE Instrumentation and Measurement Society and the IEEE Systems Council, and Vice President for Membership of the IEEE Computational Intelligence Society.
He is Editor-in-Chief of the IEEE Systems Journal (2013-19), and Associate Editor of the IEEE Transactions on Cloud Computing and IEEE Access, and has been Associate Editor of the IEEE Transactions on Computers, the IEEE Transactions on Neural Networks and the IEEE Transactions on Instrumentation and Measurement.

Sandeep Raj has been an Assistant Professor with the Department of Electronics and Communication Engineering, Indian Institute of Information Technology Bhagalpur, Sabour, India since 2018. Prior to this position (2012 - 20180, he was a was a Visiting Faculty with the National Institute of Technology Patna, India. His current research interests include digital signal processing, biomedical engineering, machine learning, internet-of-things (IoT), embedded systems design, and fabrication. He received the B. Tech. degree in Electrical and Electronics engineering from Allahabad Agricultural Institute - Deemed University, Allahabad, India, in 2009, the M. Tech. degree in electrical engineering (Gold-Medalist) and received DST INSPIRE Fellowship for pursuing the Ph.D. degree in Electrical Engineering from Indian Institute of Technology Patna, Bihta, India, 2018.
He is a member of IEEE and has published more than 11 SCI/Scopus journal articles, 5 conference papers and 1 book chapter. He is serving as a reviewer for several journals including IEEE Transactions on Industrial Electronics, IEEE Journal of Biomedical and Health Informatics, IEEE Signal Processing letters, IEEE Transactions on Instrumentation and Measurement, IEEE Access, Computer Methods and Programs in Biomedicine - (Elsevier), Computers in Biology and Medicine - (Elsevier), Australasian Physical & Engineering Sciences in Medicine - (Springer), Journal of King Saud University - Computer and Information Sciences - (Elsevier), Biomedical Engineering: Applications, Basis and Communications (BME), IETE Journal of Research.

Angelo Genovese received B.Sc., M.Sc., and Ph.D. degrees in Computer Science in 2007, 2010, and 2014 respectively, from Università degli Studi di Milano, Italy. From 2014 to 2019, he was a Postdoctoral Research Fellow and since 2015 he is a member of the Industrial, Environmental, and Biometric Informatics Laboratory (IEBIL) at the Università degli Studi di Milano, Italy. From June to August 2017, he was a Visiting Researcher at the University of Toronto, ON, Canada. Since 2019, he is Assistant Professor at Università degli Studi di Milano, Italy, Department of Computer Science.
His research interests include signal and image processing, three-dimensional reconstruction, computational intelligence technologies, and design methodologies and algorithms for self-adapting systems, applied to industrial and environmental monitoring systems and biometric recognition. In the biometrics field, his focuses are on highly usable touch-based and touchless fingerprint and palmprint recognition, as well as recognition based on soft biometric traits.
He is an Associate Editor of the Journal of Ambient Intelligence and Humanized Computing and Array. He has served as Program Chair/Co-Chair for the 2019 IEEE Int. Conf. on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA 2019), the 2018 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS 2018), the 2018 IEEE Int. Conf. on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA 2018), and the 2017 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS 2017). He is a Member of the IEEE, the IEEE Biometrics Council, the IEEE Computational Intelligence Society, the IEEE Italy Section Systems Council Chapter, and the GRIN (Gruppo di Informatica).

Rajshree Srivastava is an Assistant Professor at DIT University Dehradun in the department of Computer Science and Engineering. She has completed her M. Tech. from JIIT Noida in CSE-IS, B. Tech. from RTU in Computer Science and Engineering. She is a life time member of (IEAE), a member of IEEE, CSI, ACM, ACM-W, IAENG, Internet of Things. Her area of research is in machine learning, big data, biomedical, privacy security. She has published book chapters; Scopus indexed papers and many in IEEE/Springer Conferences. Currently she is also session chair holder of PDGC 2018, ICETIT 2019. Reviewer of the Journal entitled International Journal of Handheld Computing Research (IJHCR), IGI Global Publisher. She has guided many undergraduate students' projects. She has attended various FDP, Short term courses, Workshops from IIT's, NIT'S. She has also edited some of the Springer, de-Gruyter edited book in the field of AI, Health Care Informatics.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

état :  Comme neuf
Unread book in perfect condition...
Afficher cet article
EUR 150,71

Autre devise

EUR 17,02 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 115,21

Autre devise

EUR 7,66 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Résultats de recherche pour Trends in Deep Learning Methodologies: Algorithms,...

Image d'archives

Edité par Elsevier, 2020
ISBN 10 : 0128222263 ISBN 13 : 9780128222263
Neuf Couverture souple

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. pp. 270. N° de réf. du vendeur 26384517874

Contacter le vendeur

Acheter neuf

EUR 115,21
Autre devise
Frais de port : EUR 7,66
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Edité par Elsevier, 2020
ISBN 10 : 0128222263 ISBN 13 : 9780128222263
Neuf Couverture souple

Vendeur : Majestic Books, Hounslow, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. pp. 270. N° de réf. du vendeur 379386157

Contacter le vendeur

Acheter neuf

EUR 120,61
Autre devise
Frais de port : EUR 10,13
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Edité par Elsevier, 2020
ISBN 10 : 0128222263 ISBN 13 : 9780128222263
Neuf Couverture souple

Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. pp. 270. N° de réf. du vendeur 18384517880

Contacter le vendeur

Acheter neuf

EUR 124,77
Autre devise
Frais de port : EUR 7,95
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

ISBN 10 : 0128222263 ISBN 13 : 9780128222263
Neuf Couverture souple
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Trends in Deep Learning Methodologies: Algorithms, Applications, and Systems covers deep learning approaches such as neural networks, deep belief networks, recurrent neural networks, convolutional neural networks, deep auto-encoder, and deep gener. N° de réf. du vendeur 388985670

Contacter le vendeur

Acheter neuf

EUR 128,97
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Piuri, Vincenzo (EDT); Raj, Sandeep (EDT); Genovese, Angelo (EDT); Srivastava, Rajshree (EDT)
Edité par Academic Press, 2020
ISBN 10 : 0128222263 ISBN 13 : 9780128222263
Neuf Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 42100513-n

Contacter le vendeur

Acheter neuf

EUR 125,95
Autre devise
Frais de port : EUR 17,02
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Vincenzo Piuri
ISBN 10 : 0128222263 ISBN 13 : 9780128222263
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Trends in Deep Learning Methodologies: Algorithms, Applications, and Systems covers deep learning approaches such as neural networks, deep belief networks, recurrent neural networks, convolutional neural networks, deep auto-encoder, and deep generative networks, which have emerged as powerful computational models. Chapters elaborate on these models which have shown significant success in dealing with massive data for a large number of applications, given their capacity to extract complex hidden features and learn efficient representation in unsupervised settings. Chapters investigate deep learning-based algorithms in a variety of application, including biomedical and health informatics, computer vision, image processing, and more. In recent years, many powerful algorithms have been developed for matching patterns in data and making predictions about future events. The major advantage of deep learning is to process big data analytics for better analysis and self-adaptive algorithms to handle more data. Deep learning methods can deal with multiple levels of representation in which the system learns to abstract higher level representations of raw data. Earlier, it was a common requirement to have a domain expert to develop a specific model for each specific application, however, recent advancements in representation learning algorithms allow researchers across various subject domains to automatically learn the patterns and representation of the given data for the development of specific models. Englisch. N° de réf. du vendeur 9780128222263

Contacter le vendeur

Acheter neuf

EUR 132
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Piuri, Vincenzo (Editor)/ Raj, Sandeep (Editor)/ Genovese, Angelo (Editor)/ Srivastava, Rajshree (Editor)
Edité par Academic Pr, 2020
ISBN 10 : 0128222263 ISBN 13 : 9780128222263
Neuf Paperback
impression à la demande

Vendeur : Revaluation Books, Exeter, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : Brand New. 288 pages. 8.75x6.00x0.75 inches. In Stock. This item is printed on demand. N° de réf. du vendeur __0128222263

Contacter le vendeur

Acheter neuf

EUR 135,12
Autre devise
Frais de port : EUR 11,44
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Vincenzo Piuri
ISBN 10 : 0128222263 ISBN 13 : 9780128222263
Neuf Paperback / softback

Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback / softback. Etat : New. New copy - Usually dispatched within 4 working days. 480. N° de réf. du vendeur B9780128222263

Contacter le vendeur

Acheter neuf

EUR 145,48
Autre devise
Frais de port : EUR 6,73
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Vincenzo Piuri
ISBN 10 : 0128222263 ISBN 13 : 9780128222263
Neuf Taschenbuch
impression à la demande

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Trends in Deep Learning Methodologies: Algorithms, Applications, and Systems covers deep learning approaches such as neural networks, deep belief networks, recurrent neural networks, convolutional neural networks, deep auto-encoder, and deep generative networks, which have emerged as powerful computational models. Chapters elaborate on these models which have shown significant success in dealing with massive data for a large number of applications, given their capacity to extract complex hidden features and learn efficient representation in unsupervised settings. Chapters investigate deep learning-based algorithms in a variety of application, including biomedical and health informatics, computer vision, image processing, and more. In recent years, many powerful algorithms have been developed for matching patterns in data and making predictions about future events. The major advantage of deep learning is to process big data analytics for better analysis and self-adaptive algorithms to handle more data. Deep learning methods can deal with multiple levels of representation in which the system learns to abstract higher level representations of raw data. Earlier, it was a common requirement to have a domain expert to develop a specific model for each specific application, however, recent advancements in representation learning algorithms allow researchers across various subject domains to automatically learn the patterns and representation of the given data for the development of specific models. N° de réf. du vendeur 9780128222263

Contacter le vendeur

Acheter neuf

EUR 145
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Piuri, Vincenzo
Edité par Academic Press, 2020
ISBN 10 : 0128222263 ISBN 13 : 9780128222263
Neuf Couverture souple
impression à la demande

Vendeur : Brook Bookstore On Demand, Napoli, NA, Italie

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : new. Questo è un articolo print on demand. N° de réf. du vendeur 9ec3d00d3f4d006168c54c0236fc60da

Contacter le vendeur

Acheter neuf

EUR 118,91
Autre devise
Frais de port : EUR 40
De Italie vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

There are 4 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre