Articles liés à Bayesian Methods for Hackers: Probabilistic Programming...

Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference (Addison-Wesley Data & Analytics) - Couverture souple

 
9780133902839: Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference (Addison-Wesley Data & Analytics)

Synopsis

Master Bayesian Inference through Practical Examples and Computation–Without Advanced Mathematical Analysis

Bayesian methods of inference are deeply natural and extremely powerful. However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice–freeing you to get results using computing power.

Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention.

Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You’ll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you’ve mastered these techniques, you’ll constantly turn to this guide for the working PyMC code you need to jumpstart future projects.

Coverage includes

• Learning the Bayesian “state of mind” and its practical implications

• Understanding how computers perform Bayesian inference

• Using the PyMC Python library to program Bayesian analyses

• Building and debugging models with PyMC

• Testing your model’s “goodness of fit”

• Opening the “black box” of the Markov Chain Monte Carlo algorithm to see how and why it works

• Leveraging the power of the “Law of Large Numbers”

• Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning

• Using loss functions to measure an estimate’s weaknesses based on your goals and desired outcomes

• Selecting appropriate priors and understanding how their influence changes with dataset size

• Overcoming the “exploration versus exploitation” dilemma: deciding when “pretty good” is good enough

• Using Bayesian inference to improve A/B testing

• Solving data science problems when only small amounts of data are available

Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Cameron Davidson-Pilon has seen many fields of applied mathematics, from evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His main contributions to the open-source community include Bayesian Methods for Hackers and lifelines. Cameron was raised in Guelph, Ontario, but was educated at the University of Waterloo and Independent University of Moscow. He currently lives in Ottawa, Ontario, working with the online commerce leader Shopify.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

état :  Très bon
Afficher cet article
EUR 20,99

Autre devise

EUR 3,99 expédition depuis Rébublique tchèque vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 29,17

Autre devise

EUR 2,32 expédition depuis Royaume-Uni vers France

Destinations, frais et délais

Autres éditions populaires du même titre

9789353063641: Bayesian Methods For Hackers: Probabilistic Programming And Bayesian Inference

Edition présentée

ISBN 10 :  9353063647 ISBN 13 :  9789353063641
Editeur : Pearson India, 2015
Couverture souple

Résultats de recherche pour Bayesian Methods for Hackers: Probabilistic Programming...

Image fournie par le vendeur

Cameron Davidson-Pilon
Edité par Pearson Education (US), 2015
ISBN 10 : 0133902838 ISBN 13 : 9780133902839
Ancien ou d'occasion Softcover

Vendeur : Bookbot, Prague, Rébublique tchèque

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Softcover. Etat : Fine. N° de réf. du vendeur 20e9e04f-dae2-4a48-a0ee-0ae95a0fa4f3

Contacter le vendeur

Acheter D'occasion

EUR 20,99
Autre devise
Frais de port : EUR 3,99
De Rébublique tchèque vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Davidson-Pilon, Cameron Davidson-Pilon
Edité par Addison-Wesley Professional, 2015
ISBN 10 : 0133902838 ISBN 13 : 9780133902839
Ancien ou d'occasion Paperback

Vendeur : WorldofBooks, Goring-By-Sea, WS, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. N° de réf. du vendeur GOR009876050

Contacter le vendeur

Acheter D'occasion

EUR 21,10
Autre devise
Frais de port : EUR 5,21
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Cameron Davidson-Pilon
Edité par Pearson Education (US), US, 2015
ISBN 10 : 0133902838 ISBN 13 : 9780133902839
Neuf Paperback

Vendeur : Rarewaves.com UK, London, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : New. Master Bayesian Inference through Practical Examples and Computation-Without Advanced Mathematical Analysis Bayesian methods of inference are deeply natural and extremely powerful. However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice-freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You'll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you've mastered these techniques, you'll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes . Learning the Bayesian "state of mind" and its practical implications . Understanding how computers perform Bayesian inference . Using the PyMC Python library to program Bayesian analyses . Building and debugging models with PyMC . Testing your model's "goodness of fit" . Opening the "black box" of the Markov Chain Monte Carlo algorithm to see how and why it works . Leveraging the power of the "Law of Large Numbers" . Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning . Using loss functions to measure an estimate's weaknesses based on your goals and desired outcomes . Selecting appropriate priors and understanding how their influence changes with dataset size . Overcoming the "exploration versus exploitation" dilemma: deciding when "pretty good" is good enough . Using Bayesian inference to improve A/B testing . Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify. N° de réf. du vendeur LU-9780133902839

Contacter le vendeur

Acheter neuf

EUR 29,17
Autre devise
Frais de port : EUR 2,32
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Cameron Davidson-Pilon
Edité par Pearson Education (US), US, 2015
ISBN 10 : 0133902838 ISBN 13 : 9780133902839
Neuf Paperback

Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : New. Master Bayesian Inference through Practical Examples and Computation-Without Advanced Mathematical Analysis Bayesian methods of inference are deeply natural and extremely powerful. However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice-freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You'll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you've mastered these techniques, you'll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes . Learning the Bayesian "state of mind" and its practical implications . Understanding how computers perform Bayesian inference . Using the PyMC Python library to program Bayesian analyses . Building and debugging models with PyMC . Testing your model's "goodness of fit" . Opening the "black box" of the Markov Chain Monte Carlo algorithm to see how and why it works . Leveraging the power of the "Law of Large Numbers" . Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning . Using loss functions to measure an estimate's weaknesses based on your goals and desired outcomes . Selecting appropriate priors and understanding how their influence changes with dataset size . Overcoming the "exploration versus exploitation" dilemma: deciding when "pretty good" is good enough . Using Bayesian inference to improve A/B testing . Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify. N° de réf. du vendeur LU-9780133902839

Contacter le vendeur

Acheter neuf

EUR 33,22
Autre devise
Frais de port : EUR 2,32
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Cameron Davidson-Pilon
Edité par Addison-Wesley Professional, 2015
ISBN 10 : 0133902838 ISBN 13 : 9780133902839
Neuf Couverture souple Edition originale

Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. . 2015. 1st Edition. Paperback. . . . . N° de réf. du vendeur V9780133902839

Contacter le vendeur

Acheter neuf

EUR 42,92
Autre devise
Frais de port : EUR 3
De Irlande vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Davidson-pilon, Cameron
Edité par Addison-Wesley Professional, 2015
ISBN 10 : 0133902838 ISBN 13 : 9780133902839
Neuf Couverture souple

Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 21512063-n

Contacter le vendeur

Acheter neuf

EUR 29,15
Autre devise
Frais de port : EUR 17,38
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Davidson-Pilon, Cameron Davidson-Pilon
Edité par Addison-Wesley Professional, 2015
ISBN 10 : 0133902838 ISBN 13 : 9780133902839
Ancien ou d'occasion Couverture souple

Vendeur : SecondSale, Montgomery, IL, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. N° de réf. du vendeur 00089485339

Contacter le vendeur

Acheter D'occasion

EUR 18,07
Autre devise
Frais de port : EUR 29,85
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Davidson-pilon, Cameron
Edité par Addison-Wesley Professional, 2015
ISBN 10 : 0133902838 ISBN 13 : 9780133902839
Neuf Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 21512063-n

Contacter le vendeur

Acheter neuf

EUR 30,89
Autre devise
Frais de port : EUR 17,05
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 3 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Davidson-pilon, Cameron
Edité par Addison-Wesley Professional, 2015
ISBN 10 : 0133902838 ISBN 13 : 9780133902839
Ancien ou d'occasion Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 21512063

Contacter le vendeur

Acheter D'occasion

EUR 32,14
Autre devise
Frais de port : EUR 17,05
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 3 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Davidson-Pilon, Cameron
Edité par Addison-Wesley, 2015
ISBN 10 : 0133902838 ISBN 13 : 9780133902839
Neuf Couverture souple

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. The next generation of problems will not have deterministic solutions - the solutions will be statistical that rely on mountains, or mounds, of data. Bayesian methods offer a very flexible and extendible framework to solve these types of problems. For progr. N° de réf. du vendeur 32947812

Contacter le vendeur

Acheter neuf

EUR 41,61
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

There are 8 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre