A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning.
The mathematization of causality is a relatively recent development, and has become increasingly important in data science and machine learning. This book offers a self-contained and concise introduction to causal models and how to learn them from data.
After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems. All of these topics are discussed first in terms of two variables and then in the more general multivariate case. The bivariate case turns out to be a particularly hard problem for causal learning because there are no conditional independences as used by classical methods for solving multivariate cases. The authors consider analyzing statistical asymmetries between cause and effect to be highly instructive, and they report on their decade of intensive research into this problem.
The book is accessible to readers with a background in machine learning or statistics, and can be used in graduate courses or as a reference for researchers. The text includes code snippets that can be copied and pasted, exercises, and an appendix with a summary of the most important technical concepts.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Jonas Peters is Associate Professor of Statistics at the University of Copenhagen.
Dominik Janzing is a Senior Research Scientist at the Max Planck Institute for Intelligent Systems in Tübingen, Germany.
Bernhard Schölkopf is Director at the Max Planck Institute for Intelligent Systems in Tübingen, Germany. He is coauthor of Learning with Kernels (2002) and is a coeditor of Advances in Kernel Methods: Support Vector Learning (1998), Advances in Large-Margin Classifiers (2000), and Kernel Methods in Computational Biology (2004), all published by the MIT Press.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : HPB-Red, Dallas, TX, Etats-Unis
hardcover. Etat : Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! N° de réf. du vendeur S_433633505
Quantité disponible : 1 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26375629929
Quantité disponible : 3 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 29292471
Quantité disponible : 3 disponible(s)
Vendeur : INDOO, Avenel, NJ, Etats-Unis
Etat : As New. Unread copy in mint condition. N° de réf. du vendeur RH9780262037310
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 29292471-n
Quantité disponible : 3 disponible(s)
Vendeur : INDOO, Avenel, NJ, Etats-Unis
Etat : New. Brand New. N° de réf. du vendeur 9780262037310
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
HRD. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur GB-9780262037310
Quantité disponible : 4 disponible(s)
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Hardcover. Etat : new. Hardcover. A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning.The mathematization of causality is a relatively recent development, and has become increasingly important in data science and machine learning. This book offers a self-contained and concise introduction to causal models and how to learn them from data.After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models- how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems. All of these topics are discussed first in terms of two variables and then in the more general multivariate case. The bivariate case turns out to be a particularly hard problem for causal learning because there are no conditional independences as used by classical methods for solving multivariate cases. The authors consider analyzing statistical asymmetries between cause and effect to be highly instructive, and they report on their decade of intensive research into this problem.The book is accessible to readers with a background in machine learning or statistics, and can be used in graduate courses or as a reference for researchers. The text includes code snippets that can be copied and pasted, exercises, and an appendix with a summary of the most important technical concepts. A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9780262037310
Quantité disponible : 1 disponible(s)
Vendeur : Basi6 International, Irving, TX, Etats-Unis
Etat : Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. N° de réf. du vendeur ABEOCT25-267719
Quantité disponible : 1 disponible(s)
Vendeur : Basi6 International, Irving, TX, Etats-Unis
Etat : Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. N° de réf. du vendeur ABEOCT25-3976
Quantité disponible : 1 disponible(s)