Fundamental theory and practical algorithms of weakly supervised classification, emphasizing an approach based on empirical risk minimization.
Standard machine learning techniques require large amounts of labeled data to work well. When we apply machine learning to problems in the physical world, however, it is extremely difficult to collect such quantities of labeled data. In this book Masashi Sugiyama, Han Bao, Takashi Ishida, Nan Lu, Tomoya Sakai and Gang Niu present theory and algorithms for weakly supervised learning, a paradigm of machine learning from weakly labeled data. Emphasizing an approach based on empirical risk minimization and drawing on state-of-the-art research in weakly supervised learning, the book provides both the fundamentals of the field and the advanced mathematical theories underlying them. It can be used as a reference for practitioners and researchers and in the classroom.
The book first mathematically formulates classification problems, defines common notations, and reviews various algorithms for supervised binary and multiclass classification. It then explores problems of binary weakly supervised classification, including positive-unlabeled (PU) classification, positive-negative-unlabeled (PNU) classification, and unlabeled-unlabeled (UU) classification. It then turns to multiclass classification, discussing complementary-label (CL) classification and partial-label (PL) classification. Finally, the book addresses more advanced issues, including a family of correction methods to improve the generalization performance of weakly supervised learning and the problem of class-prior estimation.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Masashi Sugiyama is Director of the RIKEN Center for Advanced Intelligence Project and Professor of Computer Science at the University of Tokyo. Han Bao is a PhD student in the Department of Computer Science at the University of Tokyo and Research Assistant at the RIKEN Center for Advanced Intelligence Project. Takashi Ishida is a Lecturer at the University of Tokyo and Visiting Scientist at the RIKEN Center for Advanced Intelligence Project. Nan Lu is a PhD student in the Department of Complexity Science and Engineering at the University of Tokyo and Research Assistant at the RIKEN Center for Advanced Intelligence Project. Tomoya Sakai is Senior Researcher at NEC Corporation and Visiting Scientist at the RIKEN Center for Advanced Intelligence Project. Gang Niu is Research Scientist in the Imperfect Information Learning Team at the RIKEN Center for Advanced Intelligence Project.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Bellwetherbooks, McKeesport, PA, Etats-Unis
hardcover. Etat : Fine. LIKE NEW!!! Has a red or black remainder mark on bottom/exterior edge of pages. N° de réf. du vendeur MIT-PB-LN-0262047071
Quantité disponible : 1 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 320. N° de réf. du vendeur 26395193181
Quantité disponible : 3 disponible(s)
Vendeur : INDOO, Avenel, NJ, Etats-Unis
Etat : As New. Unread copy in mint condition. N° de réf. du vendeur RH9780262047074
Quantité disponible : Plus de 20 disponibles
Vendeur : INDOO, Avenel, NJ, Etats-Unis
Etat : New. Brand New. N° de réf. du vendeur 9780262047074
Quantité disponible : Plus de 20 disponibles
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Hardcover. Etat : new. Hardcover. Fundamental theory and practical algorithms of weakly supervised classification, emphasizing an approach based on empirical risk minimization.Fundamental theory and practical algorithms of weakly supervised classification, emphasizing an approach based on empirical risk minimization.Standard machine learning techniques require large amounts of labeled data to work well. When we apply machine learning to problems in the physical world, however, it is extremely difficult to collect such quantities of labeled data. In this book Masashi Sugiyama, Han Bao, Takashi Ishida, Nan Lu, Tomoya Sakai and Gang Niu present theory and algorithms for weakly supervised learning, a paradigm of machine learning from weakly labeled data. Emphasizing an approach based on empirical risk minimization and drawing on state-of-the-art research in weakly supervised learning, the book provides both the fundamentals of the field and the advanced mathematical theories underlying them. It can be used as a reference for practitioners and researchers and in the classroom.The book first mathematically formulates classification problems, defines common notations, and reviews various algorithms for supervised binary and multiclass classification. It then explores problems of binary weakly supervised classification, including positive-unlabeled (PU) classification, positive-negative-unlabeled (PNU) classification, and unlabeled-unlabeled (UU) classification. It then turns to multiclass classification, discussing complementary-label (CL) classification and partial-label (PL) classification. Finally, the book addresses more advanced issues, including a family of correction methods to improve the generalization performance of weakly supervised learning and the problem of class-prior estimation. "An overview of machine learning from data that is easily collectible, but challenging to annotate for learning algorithms"-- Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9780262047074
Quantité disponible : 1 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. pp. 320. N° de réf. du vendeur 18395193175
Quantité disponible : 3 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 44188649-n
Quantité disponible : 15 disponible(s)
Vendeur : Rarewaves USA, OSWEGO, IL, Etats-Unis
Hardback. Etat : New. N° de réf. du vendeur LU-9780262047074
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 44188649
Quantité disponible : 15 disponible(s)
Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande
Etat : New. 2022. Hardcover. . . . . . N° de réf. du vendeur V9780262047074
Quantité disponible : 15 disponible(s)